simBetaBeta DistributionsimBinomBinomial DistributionsimCauchyCauchy DistributionsimChisqChi-squared DistributionsimExpExponential DistributionsimFF DistributionsimGammaGamma DistributionsimGeomGeometric DistributionsimHyperHypergeometric DistributionsimLnormLog Normal DistributionsimLogisLogistic DistributionsimNbinomNegative Binomial DistributionsimNormNormal DistributionsimPoisPoisson DistributionsimTt DistributionsimUnifUniform DistributionsimWeibullWeibull DistributionsimMatrix, symMatrix, simVector, and simResult (in n, pmMCAR, and pmMAR). The distribution object can also be used for specifying marginal distribution of factors, measurement errors, or indicators. See the data distribution object, simDataDist, for how to model marginal distribution of variables, which will be put in setting the data object up, simData.SimBeta Beta DistributionSimBinom Binomial DistributionSimCauchy Cauchy DistributionSimChisq Chi-squared DistributionSimExp Exponential DistributionSimF F DistributionSimGamma Gamma DistributionSimGeom Geometric DistributionSimHyper Hypergeometric DistributionSimLnorm Log Normal DistributionSimLogis Logistic DistributionSimNbinom Negative Binomial DistributionSimNorm Normal DistributionSimPois Poisson DistributionSimT t DistributionSimUnif Uniform DistributionSimWeibull Weibull DistributionsimMatrixRandom parameter matrix. A distribution object can be used to create random parameter.symMatrixRandom parameter symmetric matrix. A distribution object can be used to create random parameter.simVectorRandom parameter vector. A distribution object can be used to create random parameter.simResultResult object that saves the result of a simulation study. A distribution object can be used to vary sample size (n), proportion completely missing at random (pmMCAR), or proportion missing at random (pmMAR), which make those factors (e.g., sample size) different across replications.simDataDistData distribution object. A distribution object can be used to specify marginal distributions of variables (which can be factors, measurement errors, or indicators).showClass("VirtualDist")
u1 <- simUnif(0, 1)
chi3 <- simChisq(3)
summary(chi3)
skew(chi3)
kurtosis(chi3)
plotDist(chi3)
plotDist(chi3, reverse=TRUE)Run the code above in your browser using DataLab