simBeta
Beta DistributionsimBinom
Binomial DistributionsimCauchy
Cauchy DistributionsimChisq
Chi-squared DistributionsimExp
Exponential DistributionsimF
F DistributionsimGamma
Gamma DistributionsimGeom
Geometric DistributionsimHyper
Hypergeometric DistributionsimLnorm
Log Normal DistributionsimLogis
Logistic DistributionsimNbinom
Negative Binomial DistributionsimNorm
Normal DistributionsimPois
Poisson DistributionsimT
t DistributionsimUnif
Uniform DistributionsimWeibull
Weibull DistributionsimMatrix
, symMatrix
, simVector
, and simResult
(in n
, pmMCAR
, and pmMAR
). The distribution object can also be used for specifying marginal distribution of factors, measurement errors, or indicators. See the data distribution object, simDataDist
, for how to model marginal distribution of variables, which will be put in setting the data object up, simData
.SimBeta
Beta DistributionSimBinom
Binomial DistributionSimCauchy
Cauchy DistributionSimChisq
Chi-squared DistributionSimExp
Exponential DistributionSimF
F DistributionSimGamma
Gamma DistributionSimGeom
Geometric DistributionSimHyper
Hypergeometric DistributionSimLnorm
Log Normal DistributionSimLogis
Logistic DistributionSimNbinom
Negative Binomial DistributionSimNorm
Normal DistributionSimPois
Poisson DistributionSimT
t DistributionSimUnif
Uniform DistributionSimWeibull
Weibull DistributionsimMatrix
Random parameter matrix. A distribution object can be used to create random parameter.symMatrix
Random parameter symmetric matrix. A distribution object can be used to create random parameter.simVector
Random parameter vector. A distribution object can be used to create random parameter.simResult
Result object that saves the result of a simulation study. A distribution object can be used to vary sample size (n
), proportion completely missing at random (pmMCAR
), or proportion missing at random (pmMAR
), which make those factors (e.g., sample size) different across replications.simDataDist
Data distribution object. A distribution object can be used to specify marginal distributions of variables (which can be factors, measurement errors, or indicators).showClass("VirtualDist")
u1 <- simUnif(0, 1)
chi3 <- simChisq(3)
summary(chi3)
skew(chi3)
kurtosis(chi3)
plotDist(chi3)
plotDist(chi3, reverse=TRUE)
Run the code above in your browser using DataLab