loading.null <- matrix(0, 6, 1)
loading.null[1:6, 1] <- NA
LX.NULL <- simMatrix(loading.null, 0.7)
RPH.NULL <- symMatrix(diag(1))
RTD <- symMatrix(diag(6))
CFA.Model.NULL <- simSetCFA(LY = LX.NULL, RPS = RPH.NULL, RTE = RTD)
SimData.NULL <- simData(CFA.Model.NULL, 500)
SimModel <- simModel(CFA.Model.NULL)
# We make the examples running only 5 replications to save time.
# In reality, more replications are needed.
Output.NULL <- simResult(5, SimData.NULL, SimModel)
loading.alt <- matrix(0, 6, 2)
loading.alt[1:3, 1] <- NA
loading.alt[4:6, 2] <- NA
LX.ALT <- simMatrix(loading.alt, 0.7)
latent.cor.alt <- matrix(NA, 2, 2)
diag(latent.cor.alt) <- 1
RPH.ALT <- symMatrix(latent.cor.alt, 0.5)
CFA.Model.ALT <- simSetCFA(LY = LX.ALT, RPS = RPH.ALT, RTE = RTD)
SimData.ALT <- simData(CFA.Model.ALT, 500)
Output.ALT <- simResult(5, SimData.ALT, SimModel)
plotPowerFit(Output.ALT, nullObject=Output.NULL, alpha=0.05, usedFit=c("RMSEA", "CFI", "TLI", "SRMR"))
Rule.of.thumb <- c(RMSEA=0.05, CFI=0.95, TLI=0.95, SRMR=0.06)
plotPowerFit(Output.ALT, cutoff=Rule.of.thumb, alpha=0.05, usedFit=c("RMSEA", "CFI", "TLI", "SRMR"))
Output.NULL2 <- simResult(NULL, SimData.NULL, SimModel, n=seq(50, 250, 25))
Output.ALT2 <- simResult(NULL, SimData.ALT, SimModel, n=seq(50, 250, 25))
plotPowerFit(Output.ALT2, nullObject=Output.NULL2, alpha=0.05, usedFit=c("RMSEA", "CFI", "TLI", "SRMR"))
plotPowerFit(Output.ALT2, cutoff=Rule.of.thumb, alpha=0.05, usedFit=c("RMSEA", "CFI", "TLI", "SRMR"))
Run the code above in your browser using DataLab