# This function is not public.
# loading <- matrix(0, 6, 2)
# loading[1:3, 1] <- NA
# loading[4:6, 2] <- NA
# loadingValues <- matrix(0, 6, 2)
# loadingValues[1:3, 1] <- 0.7
# loadingValues[4:6, 2] <- 0.7
# LX <- simMatrix(loading, loadingValues)
# summary(LX)
# latent.cor <- matrix(NA, 2, 2)
# diag(latent.cor) <- 1
# PH <- symMatrix(latent.cor, 0.5)
# error.cor <- matrix(0, 6, 6)
# diag(error.cor) <- 1
# TD <- symMatrix(error.cor)
# CFA.Model <- simSetCFA(LX = LX, PH = PH, TD = TD)
# SimData <- simData(CFA.Model, 200)
# SimModel <- simModel(CFA.Model)
# standardize(run(SimModel, run(SimData)))
# loading <- matrix(0, 6, 2)
# loading[1:3, 1] <- NA
# loading[4:6, 2] <- NA
# loadingValues <- matrix(0, 6, 2)
# loadingValues[1:3, 1] <- 0.7
# loadingValues[4:6, 2] <- 0.7
# LX <- simMatrix(loading, loadingValues)
# summary(LX)
# latent.cor <- matrix(NA, 2, 2)
# diag(latent.cor) <- 1
# PH <- symMatrix(latent.cor, 0.5)
# error.cor <- matrix(0, 6, 6)
# diag(error.cor) <- 1
# TD <- symMatrix(error.cor)
# CFA.Model <- simSetCFA(LX = LX, PH = PH, TD = TD)
# set <- reduceMatrices(run(CFA.Model))
Run the code above in your browser using DataLab