Learn R Programming

simsem (version 0.2-8)

summaryFit: Provide summary of model fit across replications

Description

This function will provide fit index cutoffs for values of alpha, and mean fit index values across all replications.

Usage

summaryFit(object,...)

Arguments

object
SimResult or linkS4class{SimResultParam} to be summarized
...
any additional arguments, such as for the function with result object, digits argument is available to adjust digits in results, alpha is available to select a specific alpha for fit index cutoffs.

Value

  • A data frame that provides fit statistics cutoffs and means When linkS4class{SimResult} has fixed simulation parameters the first colmns are fit index cutoffs for values of alpha and the last column is the mean fit across all replications. Rows are
    • Chi
    Chi-square fit statistic
  • AIC
  • Akaike Information Criterion
  • BIC
  • Baysian Information Criterion
  • RMSEA
  • Root Mean Square Error of Approximation
  • CFI
  • Comparative Fit Index
  • TLI
  • Tucker-Lewis Index
  • SRMR
  • Standardized Root Mean Residual

itemize

  • f0

item

  • RMSEA
  • SRMR

See Also

SimResult for the result object input SimResultParam for the parameter result object input

Examples

Run this code
loading <- matrix(0, 6, 1)
loading[1:6, 1] <- NA
LX <- simMatrix(loading, 0.7)
RPH <- symMatrix(diag(1))
RTD <- symMatrix(diag(6))
CFA.Model <- simSetCFA(LY = LX, RPS = RPH, RTE = RTD)
SimData <- simData(CFA.Model, 500)
SimModel <- simModel(CFA.Model)
# We make the examples running only 5 replications to save time.
# In reality, more replications are needed.
Output <- simResult(5, SimData, SimModel)
summaryFit(Output)
summaryFit(Output, detail=TRUE)

Run the code above in your browser using DataLab