library(survival)
fit <- survfit(Surv(tte, event) ~ treatment, data = mb_delayed_effect)
# Plot survival
plot(fit, lty = 1:2)
legend("topright", legend = c("control", "experimental"), lty = 1:2)
# Set up time, event, number of event dataset for testing
# with arbitrary weights
ten <- mb_delayed_effect |> counting_process(arm = "experimental")
head(ten)
# MaxCombo with logrank, FH(0,1), FH(1,1)
mb_delayed_effect |>
maxcombo(rho = c(0, 0, 1), gamma = c(0, 1, 1), return_corr = TRUE)
# Generate another dataset
ds <- sim_pw_surv(
n = 200,
enroll_rate = data.frame(rate = 200 / 12, duration = 12),
fail_rate = data.frame(
stratum = c("All", "All", "All"),
period = c(1, 1, 2),
treatment = c("control", "experimental", "experimental"),
duration = c(42, 6, 36),
rate = c(log(2) / 15, log(2) / 15, log(2) / 15 * 0.6)
),
dropout_rate = data.frame(
stratum = c("All", "All"),
period = c(1, 1),
treatment = c("control", "experimental"),
duration = c(42, 42),
rate = c(0, 0)
)
)
# Cut data at 24 months after final enrollment
mb_delayed_effect_2 <- ds |> cut_data_by_date(max(ds$enroll_time) + 24)
Run the code above in your browser using DataLab