teo_V: Compute the value of matrix V using the coefficients.
Description
V is the theoretical matrix from Klimko-Nelson for the SINAR(1,1)
model. Basically, we know
$$\sqrt{n}(\hat{a}_{10} - a_{10}, \hat{a}_{01} - a_{01}, \hat{a}_{11} -
a_{11}, \hat{\mu}_\epsilon - \mu_\epsilon)^\top \sim MNV(0, \Sigma)$$
where
$$\Sigma = V^{-1}W V^{-1}.$$
For more details, check Klimko and Nelson (1978).
Usage
teo_V(a10, a01, a11, mu_e, s2_e)
Arguments
a10
is the parameter in the equation \(X[i, j]a_{10}X[i - 1, j] +
a_{01}X[i, j - 1] + a_{11}X[i - 1, j - 1] + \epsilon_{i,j}\)
a01
is the parameter in the equation \(X[i, j]a_{10}X[i - 1, j] +
a_{01}X[i, j - 1] + a_{11}X[i - 1, j - 1] + \epsilon_{i,j}\)
a11
is the parameter in the equation \(X[i, j]a_{10}X[i - 1, j] +
a_{01}X[i, j - 1] + a_{11}X[i - 1, j - 1] + \epsilon_{i,j}\)
mu_e
is the mean of the innovations \(\epsilon_{i,j}\)
s2_e
is the standar deviation of the innovations \(\epsilon_{i,j}\)