## Generate some random data
Data <- matrix(abs(rnorm(3000, sd=2)),ncol=10,nrow=300)
## Initializing SincellObject named list
mySincellObject <- sc_InitializingSincellObject(Data)
## To access the gene expression matrix
expressionmatrix<-mySincellObject[["expressionmatrix"]]
## Dimensionality reduction
# Principal Component Analysis (PCA)
mySincellObject <- sc_DimensionalityReductionObj(mySincellObject, method="PCA",dim=2)
# Independent Component Analysis (ICA)
mySincellObject <- sc_DimensionalityReductionObj(mySincellObject, method="ICA",dim=2)
# t-Distributed Stochastic Neighbor Embedding (t-SNE)
mySincellObject <- sc_DimensionalityReductionObj(mySincellObject, method="tSNE",dim=2)
# Classic Multidimensional Scaling (classic-MDS).
mySincellObject <- sc_DimensionalityReductionObj(mySincellObject, method="classical-MDS",dim=2)
# Non-metric Multidimensional Scaling (nonmetric-MDS).
mySincellObject <- sc_DimensionalityReductionObj(mySincellObject, method="nonmetric-MDS",dim=2)
## To access the coordinates of cells (by columns) in low dimensional space (axes by rows)
cellsLowDimensionalSpace<-mySincellObject[["cellsLowDimensionalSpace"]]
## To access the cell-to-cell distance matrix assessed on low dimensional space
cell2celldist<-mySincellObject[["cell2celldist"]]Run the code above in your browser using DataLab