## Generate some random data
Data <- matrix(abs(rnorm(3000, sd=2)),ncol=10,nrow=300)
## Initializing SincellObject named list
mySincellObject <- sc_InitializingSincellObject(Data)
## Assessmet of cell-to-cell distance matrix without dimensionality reduction
mySincellObjectA <- sc_distanceObj(mySincellObject, method="spearman")
## Assessmet of cell-to-cell distance matrix after dimensionality reduction
## with Principal Component Analysis (PCA)
mySincellObjectB <- sc_DimensionalityReductionObj(mySincellObject, method="PCA",dim=2)
## Cluster
mySincellObjectA <- sc_clusterObj (mySincellObjectA, clust.method="max.distance",
max.distance=0.5)
mySincellObjectA <- sc_clusterObj(mySincellObjectA, clust.method="percent",
shortest.rank.percent=10)
## To access the igraph object representing the clustering output
cellsClusteringA<-mySincellObjectA[["cellsClustering"]]
## Cluster
mySincellObjectB <- sc_clusterObj (mySincellObjectB, clust.method="knn", mutual=FALSE, k=3)
mySincellObjectB <- sc_clusterObj (mySincellObjectB, clust.method="knn", mutual=TRUE, k=3)
## To access the igraph object representing the clustering output
cellsClusteringB<-mySincellObjectB[["cellsClustering"]]Run the code above in your browser using DataLab