###############################################
# Example 1: Dimitrov (2003) Table 1
# 2PL model
# item discriminations
a <- 1.7*c(0.449,0.402,0.232,0.240,0.610,0.551,0.371,0.321,0.403,0.434,0.459,
0.410,0.302,0.343,0.225,0.215,0.487,0.608,0.341,0.465)
# item difficulties
b <- c( -2.554,-2.161,-1.551,-1.226,-0.127,-0.855,-0.568,-0.277,-0.017,
0.294,0.532,0.773,1.004,1.250,1.562,1.385,2.312,2.650,2.712,3.000 )
marginal.truescore.reliability( b=b , a =a )
## Reliability= 0.606
###################################################
# Example 2: Dimitrov (2003) Table 2
# 3PL model: Poetry items (4 items)
a <- 1.7*c(1.169,0.724,0.554,0.706 )
b <- c(0.468,-1.541,-0.042,0.698 )
c <- c(0.159,0.211,0.197,0.177 )
res <- marginal.truescore.reliability( b=b , a =a , c=c)
## Reliability= 0.403
## > round( res$item , 3 )
## item pi sig2.tau sig2.error rel.item
## 1 1 0.463 0.063 0.186 0.252
## 2 2 0.855 0.017 0.107 0.135
## 3 3 0.605 0.026 0.213 0.107
## 4 4 0.459 0.032 0.216 0.130
###################################################
# Example 3: Reading Data
data( data.read)
#***
# Model 1: 1PL
mod <- rasch.mml2( data.read )
marginal.truescore.reliability( b=mod$item$b )
## Reliability= 0.653
#***
# Model 2: 2PL
mod <- rasch.mml2( data.read , est.a=1:12 )
marginal.truescore.reliability( b=mod$item$b , a=mod$item$a)
## Reliability= 0.696
Run the code above in your browser using DataLab