An $N$ times $I$ data frame of
dichotomous item responses
dat.resp
Optional data frame with dichotomous response indicators
b
Vector of length $I$ with fixed item difficulties
itemweights
Optional vector of fixed item discriminations
theta
Optional vector of initial person parameter estimates
conv
Convergence criterion
maxit
Maximal number of iterations
wle.adj
Constant for WLE adjustment
progress
Display progress?
Value
A list with following entries
thetaEstimated weighted likelihood estimate
dat.respData frame with dichotomous response indicators. A one indicates
an observed response, a zero a missing response. See also dat.resp
in the list of arguments of this function.
p.iaMatrix with expected item response, i.e.
the probabilities $P(X_{pi}=1|\theta_p ) = invlogit( \theta_p - b_i )$.
References
Adams, R. J. (2005). Reliability as a measurement design effect.
Studies in Educational Evaluation, 31, 162-172.
Warm, T. A. (1989). Weighted likelihood estimation of ability in item response theory.
Psychometrika, 54, 427-450.
See Also
For standard errors of weighted likelihood estimates estimated via jackknife
see wle.rasch.jackknife.
For a joint estimation of item and person parameters see the joint maximum
likelihood estimation method in rasch.jml.
###### use data.read as an exampledata(data.read)
# estimate the Rasch modelmod <- rasch.mml2(data.read)
mod$item
# estmate WLEsmod.wle <- wle.rasch( dat = data.read , b = mod$item$b )