#############################################################################
# EXAMPLE 1: Dataset Reading
#############################################################################
data(data.read)
dat <- data.read
I <- ncol(dat)
# set burnin and total number of iterations here (CHANGE THIS!)
burnin <- 200
iter <- 500
#***
# Model 1: 1PNO model
mod1 <- mcmc.3pno.testlet( dat , est.slope=FALSE , est.guess=FALSE ,
burnin=burnin, iter=iter )
summary(mod1)
plot(mod1,ask=TRUE) # plot MCMC chains in coda style
plot(mod1,ask=TRUE , layout=2) # plot MCMC output in different layout
#***
# Model 2: 3PNO model with Beta(5,17) prior for guessing parameters
mod2 <- mcmc.3pno.testlet( dat , guess.prior=c(5,17) ,
burnin=burnin, iter=iter )
summary(mod2)
#***
# Model 3: Rasch (1PNO) testlet model
testlets <- substring( colnames(dat) , 1 , 1 )
mod3 <- mcmc.3pno.testlet( dat , testlets=testlets , est.slope=FALSE ,
est.guess=FALSE , burnin=burnin, iter=iter )
summary(mod3)
#***
# Model 4: 3PNO testlet model with (almost) fixed guessing parameters .25
mod4 <- mcmc.3pno.testlet( dat , guess.prior=1000*c(25,75) , testlets=testlets ,
burnin=burnin, iter=iter )
summary(mod4)
plot(mod4, ask=TRUE, layout=2)
#***
# Model 5: 2PNO testlet model (param=2)
mod5 <- mcmc.3pno.testlet( dat , est.guess=FALSE , testlets=testlets ,
param=2 , burnin=burnin, iter=iter )
summary(mod5)
#***
# Model 6: 2PNO testlet model (param=3: bifactor model)
mod6 <- mcmc.3pno.testlet( dat , est.guess=FALSE , testlets=testlets ,
param=3 , burnin=burnin, iter=iter )
summary(mod6)
Run the code above in your browser using DataLab