#############################################################################
# EXAMPLE 1: Reading data
#############################################################################
data(data.read)
dat <- data.read
I <- ncol(dat)
# Rasch model
mod1 <- rasch.mml2( dat )
# Rasch model with smoothed distribution
mod2 <- rasch.mml2( dat , distribution.trait="smooth3" )
# 2PL model
mod3 <- rasch.mml2( dat , distribution.trait="normal" , est.a=1:I )
# 3PL model with equal guessing parameter
mod4 <- rasch.mml2( dat, distribution.trait="smooth3", est.a=1:I, est.c=rep(1,I) )
# Latent class model with 2 classes
mod5 <- rasch.mirtlc( dat , Nclasses=2 )
# Rasch latent class model with 3 classes
mod6 <- rasch.mirtlc( dat , Nclasses=3 , modeltype="MLC1", mmliter=100)
# PML estimation
mod7 <- rasch.pml3( dat )
# Model 8: PML estimation
# Modelling error correlations:
# joint residual correlations for each item cluster
error.corr <- diag(1,ncol(dat))
itemcluster <- rep( 1:4 ,each=3 )
for ( ii in 1:3){
ind.ii <- which( itemcluster == ii )
error.corr[ ind.ii , ind.ii ] <- ii
}
mod8 <- rasch.pml3( dat , error.corr = error.corr )
# 1PL in smirt
Qmatrix <- matrix( 1 , nrow=I , ncol=1 )
mod9 <- smirt( dat , Qmatrix=Qmatrix )
# compare model fit
a1 <- modelfit.sirt(mod1)
a2 <- modelfit.sirt(mod2)
a3 <- modelfit.sirt(mod3)
a4 <- modelfit.sirt(mod4)
a5 <- modelfit.sirt(mod5)
a6 <- modelfit.sirt(mod6)
a7 <- modelfit.sirt(mod7)
a8 <- modelfit.sirt(mod8)
a9 <- modelfit.sirt(mod9)
Run the code above in your browser using DataLab