#############################################################################
# EXAMPLE 1: Partial Credit Model and
# Generalized partial credit model for one rater
#############################################################################
data(data.ratings1)
dat <- data.ratings1
# select rater db01
dat <- dat[ paste(dat$rater) == "db01" , ]
# Model 1: Partial Credit Model
mod1 <- rm.facets( dat[ , paste0( "k",1:5) ] , maxiter=15)
# Model 2: Generalized Partial Credit Model
mod2 <- rm.facets( dat[ , paste0( "k",1:5) ] , est.a.item=TRUE , maxiter=15)
summary(mod1)
summary(mod2)
#############################################################################
# EXAMPLE 2: Facets Model: 5 items, 7 raters
#############################################################################
data(data.ratings1)
dat <- data.ratings1
# Model 1: Partial Credit Model: no rater effects
mod1 <- rm.facets( dat[ , paste0( "k",1:5) ] , rater=dat$rater ,
est.b.rater=FALSE , maxiter=15)
# Model 2: Partial Credit Model: intercept rater effects
mod2 <- rm.facets( dat[ , paste0( "k",1:5) ] , rater=dat$rater , maxiter=15)
# Model 2a: compare results with TAM package
# Results should be similar to Model 2
library(TAM)
mod2a <- tam.mml.mfr( resp= dat[ , paste0( "k",1:5) ] ,
facets= dat[ , "rater" , drop=FALSE] ,
pid= dat$pid , formulaA = ~ item*step + rater )
# Model 3: estimated rater slopes
mod3 <- rm.facets( dat[ , paste0( "k",1:5) ] , rater=dat$rater ,
est.a.rater=TRUE , maxiter=15)
# Model 4: estimated item slopes
mod4 <- rm.facets( dat[ , paste0( "k",1:5) ] , rater=dat$rater ,
est.a.item=TRUE , maxiter=15)
# Model 5: estimated rater and item slopes
mod5 <- rm.facets( dat[ , paste0( "k",1:5) ] , rater=dat$rater ,
est.a.rater=TRUE , est.a.item=TRUE , maxiter=15)
summary(mod1)
summary(mod2)
summary(mod2a)
summary(mod3)
summary(mod4)
summary(mod5)
Run the code above in your browser using DataLab