#############################################################################
# EXAMPLE 1: Hierarchical rater model (HRM-SDT) data.ratings1
#############################################################################
data(data.ratings1)
dat <- data.ratings1
# Model 1: Partial Credit Model: no rater effects
mod1 <- rm.hrm( dat[ , paste0( "k",1:5) ] , rater=dat$rater ,
pid=dat$idstud , est.c.rater="n" , est.d.rater="n" ,
d.start=100 , maxiter=15)
summary(mod1)
# Model 2: Generalized Partial Credit Model: no rater effects
mod2 <- rm.hrm( dat[ , paste0( "k",1:5) ] , rater=dat$rater ,
pid=dat$idstud , est.c.rater="n" , est.d.rater="n" ,
est.a.item =TRUE , d.start=100 , maxiter=15)
summary(mod2)
# Model 3: Equal effects in SDT
mod3 <- rm.hrm( dat[ , paste0( "k",1:5) ] , rater=dat$rater ,
pid=dat$idstud , est.c.rater="e" , est.d.rater="e" , maxiter=15)
summary(mod3)
## Item Parameters
## item N M tau.Cat1 tau.Cat2 tau.Cat3 a latM latSD
## k1 k1 274 1.573 -2.164 -2.275 0.304 1 1.476 1.085
## k2 k2 274 1.336 -1.883 -0.865 2.638 1 1.249 1.022
## k3 k3 274 1.529 -4.414 -3.754 -0.274 1 1.481 0.872
## k4 k4 274 1.372 -1.519 -1.366 3.544 1 1.234 0.974
## k5 k5 274 1.412 -2.506 -2.213 2.986 1 1.300 0.894
## -----------------------------------------------------------------
## Rater Parameters
## item.rater N M d c_1 c_2 c_3 c_1.trans c_2.trans c_3.trans
## k1-db01 k1-db01 41 0.854 3.593 0.645 5.475 9.723 0.06 0.508 0.902
## k2-db01 k2-db01 41 0.951 3.593 0.645 5.475 9.723 0.06 0.508 0.902
## k3-db01 k3-db01 41 1.122 3.593 0.645 5.475 9.723 0.06 0.508 0.902
## k4-db01 k4-db01 41 1.024 3.593 0.645 5.475 9.723 0.06 0.508 0.902
## k5-db01 k5-db01 41 1.146 3.593 0.645 5.475 9.723 0.06 0.508 0.902
## k1-db02 k1-db02 37 1.351 3.593 0.645 5.475 9.723 0.06 0.508 0.902
# Model 4: Rater effects in SDT
mod4 <- rm.hrm( dat[ , paste0( "k",1:5) ] , rater=dat$rater ,
pid=dat$idstud , est.c.rater="r" , est.d.rater="r" , maxiter=15)
summary(mod4)
Run the code above in your browser using DataLab