## Not run:
# # define ConQuest path
# path.conquest <- "C:/Conquest/"
#
# #############################################################################
# # EXAMPLE 1: Dichotomous data (data.pisaMath)
# #############################################################################
# library(sirt)
# data(data.pisaMath)
# dat <- data.pisaMath$data
#
# # select items
# items <- colnames(dat)[ which( substring( colnames(dat) , 1 , 1)=="M" ) ]
#
# #***
# # Model 11: Rasch model
# mod11 <- R2conquest(dat=dat[,items] , path.conquest=path.conquest ,
# pid=dat$idstud , name="mod11")
# summary(mod11)
# # read show file
# shw11 <- read.show( "mod11.shw" )
# # read person-item map
# pi11 <- read.pimap(showfile="mod11.shw")
#
# #***
# # Model 12: Rasch model with fixed item difficulties (from Model 1)
# mod12 <- R2conquest(dat=dat[,items] , path.conquest=path.conquest ,
# pid=dat$idstud , constraints = mod11$item[ , c("item","itemdiff")] ,
# name="mod12")
# summary(mod12)
#
# #***
# # Model 13: Latent regression model with predictors female, hisei and migra
# mod13a <- R2conquest(dat=dat[,items] , path.conquest=path.conquest ,
# pid=dat$idstud , X = dat[ , c("female" , "hisei" , "migra") ] ,
# name="mod13a")
# summary(mod13a)
#
# # latent regression with a subset of predictors
# mod13b <- R2conquest(dat=dat[,items] , path.conquest=path.conquest ,
# pid=dat$idstud , X = dat[ , c("female" , "hisei" , "migra") ] ,
# regression= "hisei migra" , name="mod13b")
#
# #***
# # Model 14: Differential item functioning (female)
# mod14 <- R2conquest(dat=dat[,items] , path.conquest=path.conquest ,
# pid=dat$idstud , X = dat[ , c("female") , drop=FALSE] ,
# model="item+female+item*female" , regression="" , name="mod14")
#
# #############################################################################
# # EXAMPLE 2: Polytomous data (data.Students)
# #############################################################################
# library(CDM)
# data(data.Students)
# dat <- data.Students
#
# # select items
# items <- grep.vec( "act" , colnames(dat) )$x
#
# #***
# # Model 21: Partial credit model
# mod21 <- R2conquest(dat=dat[,items] , path.conquest=path.conquest ,
# model="item+item*step" , name="mod21")
#
# #***
# # Model 22: Rating scale model
# mod22 <- R2conquest(dat=dat[,items] , path.conquest=path.conquest ,
# model="item+step" , name="mod22")
#
# #***
# # Model 23: Multidimensional model
# items <- grep.vec( c("act" , "sc" ) , colnames(dat) , "OR" )$x
# qmatrix <- matrix( 0 , nrow=length(items) , 2 )
# qmatrix[1:5,1] <- 1
# qmatrix[6:9,2] <- 1
# mod23 <- R2conquest(dat=dat[,items] , path.conquest=path.conquest ,
# model="item+item*step" , qmatrix=qmatrix , name="mod23")
#
# #############################################################################
# # EXAMPLE 3: Multi facet models (data.ratings1)
# #############################################################################
# library(sirt)
# data(data.ratings1)
# dat <- data.ratings1
#
# items <- paste0("k",1:5)
#
# # use numeric rater ID's
# raters <- as.numeric( substring( paste( dat$rater ) , 3 ) )
#
# #***
# # Model 31: Rater model 'item+item*step+rater'
# mod31 <- R2conquest(dat=dat[,items] , path.conquest=path.conquest ,
# itemcodes= 0:3 , model="item+item*step+rater" ,
# pid=dat$idstud , X=data.frame("rater"=raters) ,
# regression="" , name="mod31")
#
# #***
# # Model 32: Rater model 'item+item*step+rater+item*rater'
# mod32 <- R2conquest(dat=dat[,items] , path.conquest=path.conquest ,
# model="item+item*step+rater+item*rater" ,
# pid=dat$idstud , X=data.frame("rater"=raters) ,
# regression="" , name="mod32")
# ## End(Not run)
Run the code above in your browser using DataLab