Learn R Programming

sirt (version 1.14-0)

automatic.recode: Automatic Method of Finding Keys in a Dataset with Raw Item Responses

Description

This function calculates keys of a dataset with raw item responses. It starts with setting the most frequent category of an item to 1. Then, in each iteration keys are changed such that the highest item discrimination is found.

Usage

automatic.recode(data, exclude = NULL, pstart.min = 0.6, allocate = 200, maxiter = 20, progress = TRUE)

Arguments

data
Dataset with raw item responses
exclude
Vector with categories to be excluded for searching the key
pstart.min
Minimum probability for an initial solution of keys.
allocate
Maximum number of categories per item. This argument is used in the function tam.ctt3 of the TAM package.
maxiter
Maximum number of iterations
progress
A logical which indicates if iteration progress should be displayed

Value

A list with folowing entries A list with folowing entries

Examples

Run this code
## Not run: 
# #############################################################################
# # EXAMPLE 1: data.raw1
# #############################################################################
# data(data.raw1)
# 
# # recode data.raw1 and exclude keys 8 and 9 (missing codes) and
# # start with initially setting all categories larger than 50 
# res1 <- automatic.recode( data.raw1 , exclude=c(8,9) , pstart.min=.50 )
# # inspect calculated keys
# res1$item.stat
# 
# #############################################################################
# # EXAMPLE 2: data.timssAusTwn from TAM package
# #############################################################################
# 
# miceadds::library_install("TAM")
# data(data.timssAusTwn,package="TAM")
# raw.resp <- data.timssAusTwn[,1:11]
# res2 <- automatic.recode( data=raw.resp )
# ## End(Not run)

Run the code above in your browser using DataLab