## Not run:
# #############################################################################
# # EXAMPLE 07a: Dataset Gefechtsangst
# #############################################################################
#
# data(data.bs07a)
# dat <- data.bs07a
# items <- grep( "GF" , colnames(dat) , value=TRUE )
#
# #************************
# # Model 1: Rasch model
# mod1 <- TAM::tam.mml(dat[,items] )
# summary(mod1)
# IRT.WrightMap(mod1)
#
# #************************
# # Model 2: 2PL model
# mod2 <- TAM::tam.mml.2pl(dat[,items] )
# summary(mod2)
#
# #************************
# # Model 3: Latent class analysis (LCA) with two classes
# tammodel <- "
# ANALYSIS:
# TYPE=LCA;
# NCLASSES(2)
# NSTARTS(5,10)
# LAVAAN MODEL:
# F =~ GF1__GF9
# "
# mod3 <- TAM::tamaan( tammodel , dat )
# summary(mod3)
#
# #************************
# # Model 4: LCA with three classes
# tammodel <- "
# ANALYSIS:
# TYPE=LCA;
# NCLASSES(3)
# NSTARTS(5,10)
# LAVAAN MODEL:
# F =~ GF1__GF9
# "
# mod4 <- TAM::tamaan( tammodel , dat )
# summary(mod4)
#
# #************************
# # Model 5: Located latent class model (LOCLCA) with two classes
# tammodel <- "
# ANALYSIS:
# TYPE=LOCLCA;
# NCLASSES(2)
# NSTARTS(5,10)
# LAVAAN MODEL:
# F =~ GF1__GF9
# "
# mod5 <- TAM::tamaan( tammodel , dat )
# summary(mod5)
#
# #************************
# # Model 6: Located latent class model with three classes
# tammodel <- "
# ANALYSIS:
# TYPE=LOCLCA;
# NCLASSES(3)
# NSTARTS(5,10)
# LAVAAN MODEL:
# F =~ GF1__GF9
# "
# mod6 <- TAM::tamaan( tammodel , dat )
# summary(mod6)
#
# #************************
# # Model 7: Probabilistic Guttman model
# mod7 <- sirt::prob.guttman( dat[,items] )
# summary(mod7)
#
# #-- model comparison
# IRT.compareModels( mod1, mod2 , mod3 , mod4 , mod5 , mod6 , mod7 )
# ## End(Not run)
Run the code above in your browser using DataLab