Learn R Programming

sirt (version 1.14-0)

data.sirt: Some Example Datasets for the sirt Package

Description

Some example datasets for the sirt package.

Usage

data(data.si01) data(data.si02) data(data.si03) data(data.si04) data(data.si05) data(data.si06)

Arguments

Format

  • The format of the dataset data.si01 is: 'data.frame': 1857 obs. of 3 variables: $ idgroup: int 1 1 1 1 1 1 1 1 1 1 ... $ item1 : int NA NA NA NA NA NA NA NA NA NA ... $ item2 : int 4 4 4 4 4 4 4 2 4 4 ...
  • The dataset data.si02 is the Stouffer-Toby-dataset published in Lindsay, Clogg and Grego (1991; Table 1, p.97, Cross-classification A): List of 2 $ data : num [1:16, 1:4] 1 0 1 0 1 0 1 0 1 0 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : NULL .. ..$ : chr [1:4] "I1" "I2" "I3" "I4" $ weights: num [1:16] 42 1 6 2 6 1 7 2 23 4 ...
  • The format of the dataset data.si03 (containing item parameters of two studies) is: 'data.frame': 27 obs. of 3 variables: $ item : Factor w/ 27 levels "M1","M10","M11",..: 1 12 21 22 ... $ b_study1: num 0.297 1.163 0.151 -0.855 -1.653 ... $ b_study2: num 0.72 1.118 0.351 -0.861 -1.593 ...
  • The dataset data.si04 is adapted from Bartolucci, Montanari and Pandolfi (2012; Table 4, Table 7). The data contains 4999 persons, 79 items on 5 dimensions. List of 3 $ data : num [1:4999, 1:79] 0 1 1 0 1 1 0 0 1 1 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : NULL .. ..$ : chr [1:79] "A01" "A02" "A03" "A04" ... $ itempars :'data.frame': 79 obs. of 4 variables: ..$ item : Factor w/ 79 levels "A01","A02","A03",..: 1 2 3 4 5 6 7 8 9 10 ... ..$ dim : num [1:79] 1 1 1 1 1 1 1 1 1 1 ... ..$ gamma : num [1:79] 1 1 1 1 1 1 1 1 1 1 ... ..$ gamma.beta: num [1:79] -0.189 0.25 0.758 1.695 1.022 ... $ distribution: num [1:9, 1:7] 1 2 3 4 5 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : NULL .. ..$ : chr [1:7] "class" "A" "B" "C" ...
  • The dataset data.si05 contains double ratings of two exchangeable raters for three items which are in Ex1, Ex2 and Ex3, respectively. List of 3 $ Ex1:'data.frame': 199 obs. of 2 variables: ..$ C7040: num [1:199] NA 1 0 1 1 0 0 0 1 0 ... ..$ C7041: num [1:199] 1 1 0 0 0 0 0 0 1 0 ... $ Ex2:'data.frame': 2000 obs. of 2 variables: ..$ rater1: num [1:2000] 2 0 3 1 2 2 0 0 0 0 ... ..$ rater2: num [1:2000] 4 1 3 2 1 0 0 0 0 2 ... $ Ex3:'data.frame': 2000 obs. of 2 variables: ..$ rater1: num [1:2000] 5 1 6 2 3 3 0 0 0 0 ... ..$ rater2: num [1:2000] 7 2 6 3 2 1 0 1 0 3 ...
  • The dataset data.si06 contains multiple choice item responses. The correct alternative is denoted as 0, distractors are indicated by the codes 1, 2 or 3. 'data.frame': 4441 obs. of 14 variables: $ WV01: num 0 0 0 0 0 0 0 0 0 3 ... $ WV02: num 0 0 0 3 0 0 0 0 0 1 ... $ WV03: num 0 1 0 0 0 0 0 0 0 0 ... $ WV04: num 0 0 0 0 0 0 0 0 0 1 ... $ WV05: num 3 1 1 1 0 0 1 1 0 2 ... $ WV06: num 0 1 3 0 0 0 2 0 0 1 ... $ WV07: num 0 0 0 0 0 0 0 0 0 0 ... $ WV08: num 0 1 1 0 0 0 0 0 0 0 ... $ WV09: num 0 0 0 0 0 0 0 0 0 2 ... $ WV10: num 1 1 3 0 0 2 0 0 0 0 ... $ WV11: num 0 0 0 0 0 0 0 0 0 0 ... $ WV12: num 0 0 0 2 0 0 2 0 0 0 ... $ WV13: num 3 1 1 3 0 0 3 0 0 0 ... $ WV14: num 3 1 2 3 0 3 1 3 3 0 ...

References

Bartolucci, F., Montanari, G. E., & Pandolfi, S. (2012). Dimensionality of the latent structure and item selection via latent class multidimensional IRT models. Psychometrika, 77, 782-802. Lindsay, B., Clogg, C. C., & Grego, J. (1991). Semiparametric estimation in the Rasch model and related exponential response models, including a simple latent class model for item analysis. Journal of the American Statistical Association, 86, 96-107.

See Also

Some free datasets can be obtained from Psychological questionnaires: http://personality-testing.info/_rawdata/ PISA 2012: http://pisa2012.acer.edu.au/downloads.php PIAAC: http://www.oecd.org/site/piaac/publicdataandanalysis.htm TIMSS 2011: http://timssandpirls.bc.edu/timss2011/international-database.html ALLBUS: http://www.gesis.org/allbus/allbus-home/

Examples

Run this code
## Not run: 	
# #############################################################################
# # EXAMPLE 1: Nested logit model multiple choice dataset data.si06
# #############################################################################
# 
# data(data.si06)
# dat <- data.si06
# 
# #** estimate 2PL nested logit model
# library(mirt)
# mod1 <- mirt::mirt( dat , model=1 , itemtype="2PLNRM" , key=rep(0,ncol(dat) ) ,
#             verbose=TRUE  )
# summary(mod1)
# cmod1 <- mirt.wrapper.coef(mod1)$coef
# cmod1[,-1] <- round( cmod1[,-1] , 3)
# 
# #** normalize item parameters according Suh and Bolt (2010)
# cmod2 <- cmod1
# 
# # slope parameters
# ind <-  grep("ak",colnames(cmod2))
# h1 <- cmod2[ ,ind ]
# cmod2[,ind] <- t( apply( h1 , 1 , FUN = function(ll){ ll - mean(ll) } ) )
# # item intercepts
# ind <-  paste0( "d" , 0:9 )
# ind <- which( colnames(cmod2) %in% ind )
# h1 <- cmod2[ ,ind ]
# cmod2[,ind] <- t( apply( h1 , 1 , FUN = function(ll){ ll - mean(ll) } ) )
# cmod2[,-1] <- round( cmod2[,-1] , 3)	
# ## End(Not run)	

Run the code above in your browser using DataLab