#############################################################################
# EXAMPLE 1: Linking data.si03
#############################################################################
data(data.si03)
res1 <- linking.robust( itempars=data.si03 )
summary(res1)
## Number of items = 27
## Optimal trimming parameter k = 8 | non-robust parameter k = 0
## Linking constant = -0.0345 | non-robust estimate = -0.056
## Standard error = 0.0186 | non-robust estimate = 0.027
## DIF SD: MAD = 0.0771 (robust) | SD = 0.1405 (non-robust)
plot(res1)
## Not run:
# #############################################################################
# # EXAMPLE 2: Linking PISA item parameters data.pisaPars
# #############################################################################
#
# data(data.pisaPars)
#
# # Linking with items
# res2 <- linking.robust( data.pisaPars[ , c(1,3,4)] )
# summary(res2)
# ## Optimal trimming parameter k = 0 | non-robust parameter k = 0
# ## Linking constant = -0.0883 | non-robust estimate = -0.0883
# ## Standard error = 0.0297 | non-robust estimate = 0.0297
# ## DIF SD: MAD = 0.1824 (robust) | SD = 0.1487 (non-robust)
# ## -> no trimming is necessary for reducing the standard error
# plot(res2)
#
# #############################################################################
# # EXAMPLE 3: Linking with simulated item parameters containing outliers
# #############################################################################
#
# # simulate some parameters
# I <- 38
# set.seed(18785)
# itempars <- data.frame("item" = paste0("I",1:I) )
# itempars$study1 <- stats::rnorm( I , mean = .3 , sd =1.4 )
# # simulate DIF effects plus some outliers
# bdif <- stats::rnorm(I,mean=.4,sd=.09)+( stats::runif(I)>.9 )* rep( 1*c(-1,1)+.4 , each=I/2 )
# itempars$study2 <- itempars$study1 + bdif
#
# # robust linking
# res <- linking.robust( itempars )
# summary(res)
# ## Number of items = 38
# ## Optimal trimming parameter k = 12 | non-robust parameter k = 0
# ## Linking constant = -0.4285 | non-robust estimate = -0.5727
# ## Standard error = 0.0218 | non-robust estimate = 0.0913
# ## DIF SD: MAD = 0.1186 (robust) | SD = 0.5628 (non-robust)
# ## -> substantial differences of estimated linking constants in this case of
# ## deviations from normality of item parameters
# plot(res)
# ## End(Not run)
Run the code above in your browser using DataLab