#############################################################################
# EXAMPLE 1: Multivariate normal distribution
#############################################################################
#--- simulate data
Sigma <- c( 1 , .55 , .5 , .55 , 1 , .5 ,.5 , .5 , 1 )
Sigma <- matrix( Sigma , nrow=3 , ncol=3 )
mu <- c(0,1,1.2)
N <- 400
set.seed(9875)
dat <- MASS::mvrnorm( N , mu , Sigma )
colnames(dat) <- paste0("Y",1:3)
S <- cov(dat)
M <- colMeans(dat)
#--- evaulate likelihood
res1 <- loglike_mvnorm( M=M , S=S , mu=mu , Sigma=Sigma , n = N , lambda = 0 )
# compare log likelihood with slightly regularized covariance matrix
res2 <- loglike_mvnorm( M=M , S=S , mu=mu , Sigma=Sigma , n = N , lambda = 1 )
res1
res2
Run the code above in your browser using DataLab