## Not run:
# miceadds::library_install("coda")
# miceadds::library_install("R2WinBUGS")
#
# #############################################################################
# # EXAMPLE 1: Logistic regression
# #############################################################################
#
# #***************************************
# # (1) simulate data
# set.seed(8765)
# N <- 500
# x1 <- stats::rnorm(N)
# x2 <- stats::rnorm(N)
# y <- 1*( stats::plogis( -.6 + .7*x1 + 1.1 *x2 ) > stats::runif(N) )
#
# #***************************************
# # (2) estimate logistic regression with glm
# mod <- stats::glm( y ~ x1 + x2 , family="binomial" )
# summary(mod)
#
# #***************************************
# # (3) estimate model with rcppbugs package
# b <- rcppbugs::mcmc.normal( stats::rnorm(3),mu=0,tau=0.0001)
# y.hat <- rcppbugs::deterministic(function(x1,x2,b) {
# stats::plogis( b[1] + b[2]*x1 + b[3]*x2 ) }, x1 , x2 , b)
# y.lik <- rcppbugs::mcmc.bernoulli( y , p = y.hat, observed = TRUE)
# m <- rcppbugs::create.model(b, y.hat, y.lik)
#
# #*** estimate model in rcppbugs; 5000 iterations, 1000 burnin iterations
# ans <- rcppbugs::run.model(m, iterations=5000, burn=1000, adapt=1000, thin=5)
# print(rcppbugs::get.ar(ans)) # get acceptance rate
# print(apply(ans[["b"]],2,mean)) # get means of posterior
#
# #*** convert rcppbugs into mcmclist object
# mcmcobj <- data.frame( ans$b )
# colnames(mcmcobj) <- paste0("b",1:3)
# mcmcobj <- as.matrix(mcmcobj)
# class(mcmcobj) <- "mcmc"
# attr(mcmcobj, "mcpar") <- c( 1 , nrow(mcmcobj) , 1 )
# mcmcobj <- coda::as.mcmc.list( mcmcobj )
#
# # plot results
# plot(mcmcobj)
#
# # summary
# summ1 <- mcmc.list.descriptives( mcmcobj )
# summ1
# ## End(Not run)
Run the code above in your browser using DataLab