## Not run:
# #############################################################################
# # EXAMPLE 1: Reading data
# #############################################################################
# data(data.read)
# dat <- data.read
# I <- ncol(dat)
#
# #*** Model 1: Rasch model
# mod1 <- rasch.mml2(dat)
# fmod1 <- modelfit.sirt( mod1 )
# summary(fmod1)
#
# #*** Model 1b: Rasch model in TAM package
# library(TAM)
# mod1b <- TAM::tam.mml(dat)
# fmod1b <- modelfit.sirt( mod1b )
# summary(fmod1b)
#
# #*** Model 2: Rasch model with smoothed distribution
# mod2 <- rasch.mml2( dat , distribution.trait="smooth3" )
# fmod2 <- modelfit.sirt( mod2 )
# summary(fmod2 )
#
# #*** Model 3: 2PL model
# mod3 <- rasch.mml2( dat , distribution.trait="normal" , est.a=1:I )
# fmod3 <- modelfit.sirt( mod3 )
# summary(fmod3 )
#
# #*** Model 3: 2PL model in TAM package
# mod3b <- TAM::tam.mml.2pl( dat )
# fmod3b <- modelfit.sirt(mod3b)
# summary(fmod3b)
# # model fit in TAM package
# tmod3b <- TAM::tam.modelfit(mod3b)
# summary(tmod3b)
# # model fit in mirt package
# library(mirt)
# mmod3b <- tam2mirt(mod3b) # convert to mirt object
# mirt::M2(mmod3b$mirt) # global fit statistic
# mirt::residuals( mmod3b$mirt , type="LD") # local dependence statistics
#
# #*** Model 4: 3PL model with equal guessing parameter
# mod4 <- TAM::rasch.mml2( dat, distribution.trait="smooth3", est.a=1:I, est.c=rep(1,I) )
# fmod4 <- modelfit.sirt( mod4 )
# summary(fmod4 )
#
# #*** Model 5: Latent class model with 2 classes
# mod5 <- rasch.mirtlc( dat , Nclasses=2 )
# fmod5 <- modelfit.sirt( mod5 )
# summary(fmod5 )
#
# #*** Model 6: Rasch latent class model with 3 classes
# mod6 <- rasch.mirtlc( dat , Nclasses=3 , modeltype="MLC1", mmliter=100)
# fmod6 <- modelfit.sirt( mod6 )
# summary(fmod6 )
#
# #*** Model 7: PML estimation
# mod7 <- rasch.pml3( dat )
# fmod7 <- modelfit.sirt( mod7 )
# summary(fmod7 )
#
# #*** Model 8: PML estimation
# # Modelling error correlations:
# # joint residual correlations for each item cluster
# error.corr <- diag(1,ncol(dat))
# itemcluster <- rep( 1:4 ,each=3 )
# for ( ii in 1:3){
# ind.ii <- which( itemcluster == ii )
# error.corr[ ind.ii , ind.ii ] <- ii
# }
# mod8 <- rasch.pml3( dat , error.corr = error.corr )
# fmod8 <- modelfit.sirt( mod8 )
# summary(fmod8 )
#
# #*** Model 9: 1PL in smirt
# Qmatrix <- matrix( 1 , nrow=I , ncol=1 )
# mod9 <- smirt( dat , Qmatrix=Qmatrix )
# fmod9 <- modelfit.sirt( mod9 )
# summary(fmod9 )
#
# #*** Model 10: 3-dimensional Rasch model in NOHARM
# noharm.path <- "c:/NOHARM"
# Q <- matrix( 0 , nrow=12 , ncol=3 )
# Q[ cbind(1:12 , rep(1:3,each=4) ) ] <- 1
# rownames(Q) <- colnames(dat)
# colnames(Q) <- c("A","B","C")
# # covariance matrix
# P.pattern <- matrix( 1 , ncol=3 , nrow=3 )
# P.init <- 0.8+0*P.pattern
# diag(P.init) <- 1
# # loading matrix
# F.pattern <- 0*Q
# F.init <- Q
# # estimate model
# mod10 <- R2noharm( dat = dat , model.type="CFA" , F.pattern = F.pattern ,
# F.init = F.init , P.pattern = P.pattern , P.init = P.init ,
# writename = "ex4e" , noharm.path = noharm.path , dec ="," )
# fmod10 <- modelfit.sirt( mod10 )
# summary(fmod10)
#
# #*** Model 11: Rasch model in mirt package
# library(mirt)
# mod11 <- mirt::mirt(dat , 1, itemtype="Rasch",verbose=TRUE)
# fmod11 <- modelfit.sirt( mod11 )
# summary(fmod11)
# # model fit in mirt package
# mirt::M2(mod11)
# mirt::residuals(mod11)
# ## End(Not run)
Run the code above in your browser using DataLab