#############################################################################
# EXAMPLE 1: Reading Data
#############################################################################
data(data.read)
dat <- data.read
# define item cluster
itemcluster <- rep( 1:3 , each = 4 )
mod1 <- rasch.copula2( dat , itemcluster = itemcluster )
summary(mod1)
# person parameter estimation under the Rasch copula model
pmod1 <- person.parameter.rasch.copula(raschcopula.object = mod1 )
## Mean percentage standard error inflation
## missing.pattern Mperc.seinflat
## 1 1 6.35
## Not run:
# #############################################################################
# # EXAMPLE 2: 12 items nested within 3 item clusters (testlets)
# # Cluster 1 -> Items 1-4; Cluster 2 -> Items 6-9; Cluster 3 -> Items 10-12
# #############################################################################
#
# set.seed(967)
# I <- 12 # number of items
# n <- 450 # number of persons
# b <- seq(-2,2, len=I) # item difficulties
# b <- sample(b) # sample item difficulties
# theta <- stats::rnorm( n , sd = 1 ) # person abilities
# # itemcluster
# itemcluster <- rep(0,I)
# itemcluster[ 1:4 ] <- 1
# itemcluster[ 6:9 ] <- 2
# itemcluster[ 10:12 ] <- 3
# # residual correlations
# rho <- c( .35 , .25 , .30 )
#
# # simulate data
# dat <- sim.rasch.dep( theta , b , itemcluster , rho )
# colnames(dat) <- paste("I" , seq(1,ncol(dat)) , sep="")
#
# # estimate Rasch copula model
# mod1 <- rasch.copula2( dat , itemcluster = itemcluster )
# summary(mod1)
#
# # person parameter estimation under the Rasch copula model
# pmod1 <- person.parameter.rasch.copula(raschcopula.object = mod1 )
# ## Mean percentage standard error inflation
# ## missing.pattern Mperc.seinflat
# ## 1 1 10.48
# ## End(Not run)
Run the code above in your browser using DataLab