Learn R Programming

sirt (version 1.14-0)

qmc.nodes: Calculation of Quasi Monte Carlo Integration Points

Description

This function calculates integration nodes based on the multivariate normal distribution with zero mean vector and identity covariance matrix. See Pan and Thompson (2007) and Gonzales et al. (2006) for details.

Usage

qmc.nodes(snodes, ndim)

Arguments

snodes
Number of integration nodes
ndim
Number of dimensions

Value

References

Gonzalez, J., Tuerlinckx, F., De Boeck, P., & Cools, R. (2006). Numerical integration in logistic-normal models. Computational Statistics & Data Analysis, 51, 1535-1548. Pan, J., & Thompson, R. (2007). Quasi-Monte Carlo estimation in generalized linear mixed models. Computational Statistics & Data Analysis, 51, 5765-5775.

Examples

Run this code
## some toy examples

# 5 nodes on one dimension
qmc.nodes( snodes=5 , ndim=1 )
  ##            [,1]
  ## [1,]  0.0000000
  ## [2,] -0.3863753
  ## [3,]  0.8409238
  ## [4,] -0.8426682
  ## [5,]  0.3850568

# 7 nodes on two dimensions
qmc.nodes( snodes =7 , ndim=2 )
  ##             [,1]        [,2]
  ## [1,]  0.00000000 -0.43072730
  ## [2,] -0.38637529  0.79736332
  ## [3,]  0.84092380 -1.73230641
  ## [4,] -0.84266815 -0.03840544
  ## [5,]  0.38505683  1.51466109
  ## [6,] -0.00122394 -0.86704605
  ## [7,]  1.35539115  0.33491073

Run the code above in your browser using DataLab