Learn R Programming

sirt (version 1.14-0)

rasch.pairwise: Pairwise Estimation Method of the Rasch Model

Description

This function estimates the Rasch model with a minimum chi square estimation method (cited in Fischer, 2007, p. 544) which is a pairwise conditional likelihood estimation approach.

Usage

rasch.pairwise(dat, conv = 1e-04, maxiter = 3000, progress = TRUE, b.init = NULL, zerosum = FALSE)
"summary"(object,...)

Arguments

dat
An $N \times I$ data frame of dichotomous item responses
conv
Convergence criterion
maxiter
Maximum number of iterations
progress
Display iteration progress?
b.init
An optional vector of length $I$ of item difficulties
zerosum
Optional logical indicating whether item difficulties should be centered in each iteration. The default is that no centering is conducted.
object
Object of class rasch.pairwise
...
Further arguments to be passed

Value

An object of class rasch.pairwise with following entries with following entries

References

Fischer, G. H. (2007). Rasch models. In C. R. Rao and S. Sinharay (Eds.), Handbook of Statistics, Vol. 26 (pp. 515-585). Amsterdam: Elsevier.

See Also

See summary.rasch.pairwise for a summary.

A slightly different implementation of this conditional pairwise method is implemented in rasch.pairwise.itemcluster.

Pairwise marginal likelihood estimation (also labeled as pseudolikelihood estimation) can be conducted with rasch.pml3.

Examples

Run this code
#############################################################################
# EXAMPLE 1: Reading data set | pairwise estimation Rasch model
#############################################################################

data(data.read)

#*** Model 1: no constraint on item difficulties
mod1 <- rasch.pairwise( data.read )
summary(mod1)

#*** Model 2: sum constraint on item difficulties
mod2 <- rasch.pairwise( data.read , zerosum=TRUE)
summary(mod2)

## Not run: 
# mod2$item$b   # extract item difficulties
# 
# # Bootstrap for item difficulties
# boot_pw <- function(data, indices ){   
#         dd <- data[ indices , ] # bootstrap of indices
#         mod <- rasch.pairwise( dd , zerosum=TRUE , progress=FALSE)
#         mod$item$b   
#     }
# set.seed(986)
# library(boot)
# dat <- data.read
# bmod2 <- boot::boot( dat , boot_pw , R =999 ) 
# bmod2
# summary(bmod2)
# # quantiles for bootstrap sample (and confidence interval)
# apply( bmod2$t , 2 , quantile, c(.025 ,.5 , .975) )
# ## End(Not run)

Run the code above in your browser using DataLab