#############################################################################
# EXAMPLE 1: 11 Items: 2 itemclusters with 2 resp. 3 dependent items
# and 6 independent items
#############################################################################
set.seed(7654)
I <- 11 # number of items
n <- 1500 # number of persons
b <- seq(-2,2, len=I) # item difficulties
theta <- stats::rnorm( n , sd = 1 ) # person abilities
# itemcluster
itemcluster <- rep(0,I)
itemcluster[ c(3,5)] <- 1
itemcluster[c(2,4,9)] <- 2
# residual correlations
rho <- c( .7 , .5 )
# simulate data
dat <- sim.rasch.dep( theta , b , itemcluster , rho )
colnames(dat) <- paste("I" , seq(1,ncol(dat)) , sep="")
# estimate Rasch copula model
mod1 <- rasch.copula2( dat , itemcluster = itemcluster )
summary(mod1)
# compare result with Rasch model estimation in rasch.copula
# delta must be set to zero
mod2 <- rasch.copula2( dat , itemcluster = itemcluster , delta = c(0,0) ,
est.delta = c(0,0) )
summary(mod2)
# estimate Rasch model with rasch.mml2 function
mod3 <- rasch.mml2( dat )
summary(mod3)
## Not run:
# #############################################################################
# # EXAMPLE 2: 12 Items: Cluster 1 -> Items 1,...,4;
# # Cluster 2 -> Items 6,...,9; Cluster 3 -> Items 10,11,12
# #############################################################################
#
# set.seed(7896)
# I <- 12 # number of items
# n <- 450 # number of persons
# b <- seq(-2,2, len=I) # item difficulties
# b <- sample(b) # sample item difficulties
# theta <- stats::rnorm( n , sd = 1 ) # person abilities
# # itemcluster
# itemcluster <- rep(0,I)
# itemcluster[ 1:4 ] <- 1
# itemcluster[ 6:9 ] <- 2
# itemcluster[ 10:12 ] <- 3
# # residual correlations
# rho <- c( .55 , .25 , .45 )
#
# # simulate data
# dat <- sim.rasch.dep( theta , b , itemcluster , rho )
# colnames(dat) <- paste("I" , seq(1,ncol(dat)) , sep="")
#
# # estimate Rasch copula model
# mod1 <- rasch.copula2( dat , itemcluster = itemcluster , numdiff.parm = .001 )
# summary(mod1)
#
# # Rasch model estimation
# mod2 <- rasch.copula2( dat , itemcluster = itemcluster ,
# delta = rep(0,3) , est.delta = rep(0,3) )
# summary(mod2)
#
# # estimation with pairwise Rasch model
# mod3 <- rasch.pairwise( dat )
# summary(mod3)
# ## End(Not run)
Run the code above in your browser using DataLab