#############################################################################
# EXAMPLE 1: data.read
#############################################################################
data( data.read )
dat <- data.read
I <- ncol(dat)
# apply function without defining item strata
stratified.cronbach.alpha( data.read )
# define item strata
itemstrata <- cbind( colnames(dat) , substring( colnames(dat) , 1 ,1 ) )
stratified.cronbach.alpha( data.read , itemstrata=itemstrata )
## scale I alpha mean.tot var.tot alpha.stratified
## 1 total 12 0.677 8.680 5.668 0.703
## 2 A 4 0.545 2.616 1.381 NA
## 3 B 4 0.381 2.811 1.059 NA
## 4 C 4 0.640 3.253 1.107 NA
## Not run:
# #**************************
# # reliability analysis in psych package
# library(psych)
# # Cronbach's alpha and item discriminations
# psych::alpha( dat )
# # McDonald's omega
# psych::omega(dat , nfactors=1) # 1 factor
# ## Alpha: 0.69
# ## Omega Total 0.69
# ## => Note that alpha in this function is the standardized Cronbach's
# ## alpha, i.e. alpha computed for standardized variables.
# psych::omega(dat , nfactors=2) # 2 factors
# ## Omega Total 0.72
# psych::omega(dat , nfactors=3) # 3 factors
# ## Omega Total 0.74
# ## End(Not run)
Run the code above in your browser using DataLab