#############################################################################
# EXAMPLE 1: Generalized partial credit model
#############################################################################
data(data.ratings1)
dat <- data.ratings1
# estimate model
mod1 <- rm.facets( dat[ , paste0( "k",1:5) ], rater=dat$rater,
pid=dat$idstud , maxiter=15)
# extract dataset and item parameters
data <- mod1$procdata$dat2.NA
a <- mod1$ipars.dat2$a
b <- mod1$ipars.dat2$b
theta0 <- mod1$person$EAP
# define item response function for item ii
calc.pcm <- function( theta , a , b , ii ){
K <- ncol(b)
N <- length(theta)
matrK <- matrix( 0:K , nrow=N , ncol=K+1 , byrow=TRUE)
eta <- a[ii] * theta * matrK - matrix( c(0,b[ii,]), nrow=N, ncol=K+1, byrow=TRUE)
eta <- exp(eta)
probs <- eta / rowSums(eta, na.rm=TRUE)
return(probs)
}
arg.list <- list("a"=a , "b"=b )
# MLE
abil1 <- IRT.mle( data, irffct=calc.pcm, theta=theta0, arg.list=arg.list )
str(abil1)
# WLE
abil2 <- IRT.mle( data, irffct=calc.pcm, theta=theta0, arg.list=arg.list, type="WLE")
str(abil2)
# MAP with prior distribution N(.2, 1.3)
abil3 <- IRT.mle( data, irffct=calc.pcm, theta=theta0, arg.list=arg.list,
type="MAP", mu=.2, sigma=1.3 )
str(abil3)
#############################################################################
# EXAMPLE 2: Rasch model
#############################################################################
data(data.read)
dat <- data.read
I <- ncol(dat)
# estimate Rasch model
mod1 <- rasch.mml2( dat )
summary(mod1)
# define item response function
irffct <- function( theta, b , ii){
eta <- exp( theta - b[ii] )
probs <- eta / ( 1 + eta )
probs <- cbind( 1 - probs , probs )
return(probs)
}
# initial person parameters and item parameters
theta0 <- mod1$person$EAP
arg.list <- list( "b" = mod1$item$b )
# estimate WLE
source.all(pfsirt)
abil <- IRT.mle( data = dat , irffct=irffct , arg.list=arg.list ,
theta=theta0, type="WLE")
# compare with wle.rasch function
theta <- wle.rasch( dat , b= mod1$item$b )
cbind( abil[,1] , theta$theta , abil[,2] , theta$se.theta )
#############################################################################
# EXAMPLE 3: Ramsay quotient model
#############################################################################
data(data.read)
dat <- data.read
I <- ncol(dat)
# estimate Ramsay model
mod1 <- rasch.mml2( dat , irtmodel ="ramsay.qm" )
summary(mod1)
# define item response function
irffct <- function( theta, b , K , ii){
eta <- exp( theta / b[ii] )
probs <- eta / ( K[ii] + eta )
probs <- cbind( 1 - probs , probs )
return(probs)
}
# initial person parameters and item parameters
theta0 <- exp( mod1$person$EAP )
arg.list <- list( "b" = mod1$item2$b , "K"=mod1$item2$K )
# estimate MLE
res <- IRT.mle( data = dat , irffct=irffct , arg.list=arg.list , theta=theta0 ,
maxval=20 , maxiter=50)
Run the code above in your browser using DataLab