# define ConQuest path
path.conquest <- "C:/Conquest/"
#############################################################################
# EXAMPLE 1: Dichotomous data (data.pisaMath)
#############################################################################
library(sirt)
data(data.pisaMath)
dat <- data.pisaMath$data
# select items
items <- colnames(dat)[ which( substring( colnames(dat) , 1 , 1)=="M" ) ]
#***
# Model 11: Rasch model
mod11 <- R2conquest(dat=dat[,items] , path.conquest=path.conquest ,
pid=dat$idstud , name="mod11")
summary(mod11)
# read show file
shw11 <- read.show( "mod11.shw" )
# read person-item map
pi11 <- read.pimap(showfile="mod11.shw")
#***
# Model 12: Rasch model with fixed item difficulties (from Model 1)
mod12 <- R2conquest(dat=dat[,items] , path.conquest=path.conquest ,
pid=dat$idstud , constraints = mod11$item[ , c("item","itemdiff")] ,
name="mod12")
summary(mod12)
#***
# Model 13: Latent regression model with predictors female, hisei and migra
mod13a <- R2conquest(dat=dat[,items] , path.conquest=path.conquest ,
pid=dat$idstud , X = dat[ , c("female" , "hisei" , "migra") ] ,
name="mod13a")
summary(mod13a)
# latent regression with a subset of predictors
mod13b <- R2conquest(dat=dat[,items] , path.conquest=path.conquest ,
pid=dat$idstud , X = dat[ , c("female" , "hisei" , "migra") ] ,
regression= "hisei migra" , name="mod13b")
#***
# Model 14: Differential item functioning (female)
mod14 <- R2conquest(dat=dat[,items] , path.conquest=path.conquest ,
pid=dat$idstud , X = dat[ , c("female") , drop=FALSE] ,
model="item+female+item*female" , regression="" , name="mod14")
#############################################################################
# EXAMPLE 2: Polytomous data (data.Students)
#############################################################################
library(CDM)
data(data.Students)
dat <- data.Students
# select items
items <- grep.vec( "act" , colnames(dat) )$x
#***
# Model 21: Partial credit model
mod21 <- R2conquest(dat=dat[,items] , path.conquest=path.conquest ,
model="item+item*step" , name="mod21")
#***
# Model 22: Rating scale model
mod22 <- R2conquest(dat=dat[,items] , path.conquest=path.conquest ,
model="item+step" , name="mod22")
#***
# Model 23: Multidimensional model
items <- grep.vec( c("act" , "sc" ) , colnames(dat) , "OR" )$x
qmatrix <- matrix( 0 , nrow=length(items) , 2 )
qmatrix[1:5,1] <- 1
qmatrix[6:9,2] <- 1
mod23 <- R2conquest(dat=dat[,items] , path.conquest=path.conquest ,
model="item+item*step" , qmatrix=qmatrix , name="mod23")
#############################################################################
# EXAMPLE 3: Multi facet models (data.ratings1)
#############################################################################
library(sirt)
data(data.ratings1)
dat <- data.ratings1
items <- paste0("k",1:5)
# use numeric rater ID's
raters <- as.numeric( substring( paste( dat$rater ) , 3 ) )
#***
# Model 31: Rater model 'item+item*step+rater'
mod31 <- R2conquest(dat=dat[,items] , path.conquest=path.conquest ,
itemcodes= 0:3 , model="item+item*step+rater" ,
pid=dat$idstud , X=data.frame("rater"=raters) ,
regression="" , name="mod31")
#***
# Model 32: Rater model 'item+item*step+rater+item*rater'
mod32 <- R2conquest(dat=dat[,items] , path.conquest=path.conquest ,
model="item+item*step+rater+item*rater" ,
pid=dat$idstud , X=data.frame("rater"=raters) ,
regression="" , name="mod32")
Run the code above in your browser using DataLab