Learn R Programming

sirt (version 1.5-0)

automatic.recode: Automatic Method of Finding Keys in a Dataset with Raw Item Responses

Description

This function calculates keys of a dataset with raw item responses. It starts with setting the most frequent category of an item to 1. Then, in each iteration keys are changed such that the highest item discrimination is found.

Usage

automatic.recode(data, exclude = NULL, pstart.min = 0.6, allocate = 200, 
    maxiter = 20, progress = TRUE)

Arguments

data
Dataset with raw item responses
exclude
Vector with categories to be excluded for searching the key
pstart.min
Minimum probability for an initial solution of keys.
allocate
Maximum number of categories per item. This argument is used in the function tam.ctt3 of the TAM package.
maxiter
Maximum number of iterations
progress
A logical which indicates if iteration progress should be displayed

Value

  • A list with folowing entries
  • item.statData frame with item name, p value, item discrimination and the calculated key
  • data.scoredScored data frame using calculated keys in item.stat
  • categ.statsData frame with statistics for all categories of all items

Examples

Run this code
#############################################################################
# EXAMPLE 1: data.raw1
#############################################################################
data(data.raw1)

# recode data.raw1 and exclude keys 8 and 9 (missing codes) and
# start with initially setting all categories larger than 50res1 <- automatic.recode( data.raw1 , exclude=c(8,9) , pstart.min=.50 )
# inspect calculated keys
res1$item.stat

#############################################################################
# EXAMPLE 2: data.timssAusTwn from TAM package
#############################################################################

library(TAM)
data(data.timssAusTwn,package="TAM")
raw.resp <- data.timssAusTwn[,1:11]
res2 <- automatic.recode( data=raw.resp )

Run the code above in your browser using DataLab