Learn R Programming

sirt (version 1.5-0)

class.accuracy.rasch: Classification Accuracy in the Rasch Model

Description

This function computes the classification accuracy in the Rasch model for the maximum likelihood (person parameter) estimate according to the method of Rudner (2001).

Usage

class.accuracy.rasch(cutscores, b, meantheta, sdtheta, theta.l,
    n.sims=0, seed=988)

Arguments

cutscores
Vector of cut scores
b
Vector of item difficulties
meantheta
Mean of the trait distribution
sdtheta
Standard deviation of the trait distribution
theta.l
Discretized theta distribution
n.sims
Number of simulated persons in a data set. The default is 0 which means that no simulation is performed.
seed
The random seed for the simulation

Value

  • A list with following entries:
  • class.statsData frame with classification accuracies. The column agree0 refers to absolute agreement, agree1 to the agreement of at most a difference of one level.
  • class.probProbability table of classification

References

Rudner, L.M. (2001). Computing the expected proportions of misclassified examinees. Practical Assessment, Research & Evaluation, 7(14).

See Also

Classification accuracy of other IRT models can be obtained with the Rpackage cacIRT.

Examples

Run this code
#############################################################################
# EXAMPLE 1: Reading dataset
#############################################################################
data( data.read , package="sirt")
dat <- data.read

# estimate the Rasch model
mod <- rasch.mml2( dat )

# estimate classification accuracy (3 levels)
cutscores <- c( -1 , .3 )	# cut scores at theta=-1 and theta=.3
class.accuracy.rasch( cutscores=cutscores , b=mod$item$b , 
           meantheta=0 ,  sdtheta=mod$sd.trait ,
           theta.l=seq(-4,4,len=200 ) , n.sims=3000)
  ##   Cut Scores 
  ##   [1] -1.0  0.3
  ##   
  ##   WLE reliability (by simulation) = 0.671 
  ##   WLE consistency (correlation between two parallel forms) = 0.649 
  ##   
  ##   Classification accuracy and consistency
  ##              agree0 agree1 kappa consistency
  ##   analytical   0.68  0.990 0.492          NA
  ##   simulated    0.70  0.997 0.489       0.599
  ##   
  ##   Probability classification table 
  ##               Est_Class1 Est_Class2 Est_Class3
  ##   True_Class1      0.136      0.041      0.001
  ##   True_Class2      0.081      0.249      0.093
  ##   True_Class3      0.009      0.095      0.294

Run the code above in your browser using DataLab