Learn R Programming

sirt (version 1.5-0)

equating.rasch.jackknife: Jackknife Equating Error in Generalized Logistic Rasch Model

Description

This function estimates the linking error in linking based on Jackknife (Monseur & Berezner, 2007).

Usage

equating.rasch.jackknife(pars.data, display = TRUE, 
   se.linkerror = FALSE, alpha1 = 0, alpha2 = 0)

Arguments

pars.data
Data frame with four columns: jackknife unit (1st column), item parameter study 1 (2nd column), item parameter study 2 (3rd column), item (4th column)
display
Display progress?
se.linkerror
Compute standard error of the linking error
alpha1
Fixed $\alpha_1$ parameter in the generalized item response model
alpha2
Fixed $\alpha_2$ parameter in the generalized item response model

Value

  • A list with following entries:
  • pars.dataUsed item parameters
  • itemunitsUsed units for jackknife
  • descriptivesDescriptives for Jackknife. linkingerror.jackknife is the estimated linking error.

References

Monseur, C., & Berezner, A. (2007). The computation of equating errors in international surveys in education. Journal of Applied Measurement, 8, 323-335.

See Also

For more details on linking methods see equating.rasch.

Examples

Run this code
#############################################################################
# EXAMPLE 1: Linking errors PISA study
#############################################################################

data(data.pisaPars)
pars <- data.pisaPars

# Linking error: Jackknife unit is the testlet
res1 <- equating.rasch.jackknife(pars[ , c("testlet" , "study1"  , "study2" , "item" ) ] )
res1$descriptives
  ##   N.items N.units      shift        SD linkerror.jackknife SE.SD.jackknife
  ## 1      25       8 0.09292838 0.1487387          0.04491197      0.03466309

# Linking error: Jackknife unit is the item
res2 <- equating.rasch.jackknife(pars[ , c("item" , "study1"  , "study2" , "item" ) ] )
res2$descriptives
  ##   N.items N.units      shift        SD linkerror.jackknife SE.SD.jackknife
  ## 1      25      25 0.09292838 0.1487387          0.02682839      0.02533327

Run the code above in your browser using DataLab