Learn R Programming

sirt (version 1.5-0)

monoreg.rowwise: Monotone Regression for Rows or Columns in a Matrix

Description

Monotone (isotone) regression for rows (monoreg.rowwise) or columns (monoreg.colwise) in a matrix.

Usage

monoreg.rowwise(yM, wM)

monoreg.colwise(yM, wM)

Arguments

yM
Matrix with dependent variable for the regression. Values are assumed to be sorted.
wM
Matrix with weights for every entry in the yM matrix.

Value

  • Matrix with fitted values

See Also

See also the monoreg function from the fdrtool package.

Examples

Run this code
y <- c(22.5 , 23.33 , 20.83 , 24.25 )
w <- c( 3,3,3,2)
# define matrix input
yM <- matrix( 0 , nrow=2 , ncol=4 )
wM <- yM
yM[1,] <- yM[2,] <- y
wM[1,] <- w
wM[2,] <- c(1,3,4, 3 )

# fit rowwise monotone regression
monoreg.rowwise( yM , wM )
# compare results with monoreg function from fdrtool package
library(fdrtool)
fdrtool::monoreg(x=yM[1,] , w=wM[1,])$yf
fdrtool::monoreg(x=yM[2,] , w=wM[2,])$yf

Run the code above in your browser using DataLab