rasch.jml(dat, method = "MLE", b.init = NULL, constraints = NULL, weights = NULL,
glob.conv = 10^(-6), conv1 = 1e-05, conv2 = 0.001, progress = TRUE,
bsteps = 4,thetasteps = 2, wle.adj = 0, jmliter = 100, prox = TRUE ,
proxiter = 30, proxconv = 0.01, dp=NULL , theta.init = NULL , calc.fit=TRUE)
## S3 method for class 'rasch.jml':
summary(object,...)
MLE
is maximum likelihood estimation (where person with
perfect scores are deleted from analysis). WLE
uses weighted
likelihood estimation (Warm, 1989) for personcolnames(dat)
) which shall be fixed
during estimation. The second column is the corresponding
item difficulty.NULL
, i.e. all persons in the sample
are equally weighted.TRUE
rasch.prox
) be used as initial estimations?
Default is TRUE
..data.prep
)
which could be created in earlier JML runs. Default is NULL
.rasch.jml
rasch.jml.jackknife1
)item$itemdiff.correction
in this function. If $I$ denotes the number
of items, then the correction factor is $\frac{I-1}{I}$.summary.rasch.jml
.
See rasch.prox
for the PROX algorithm as initial iterations.
For a bias correction of the JML method try rasch.jml.jackknife1
.
See also marginal maximum likelihood estimation with rasch.mml2
or the Rpackage #############################################################################
# SIMULATED EXAMPLE 1: Simulated data from the Rasch model
#############################################################################
set.seed(789)
N <- 500 # number of persons
I <- 11 # number of items
b <- seq( -2 , 2 , length=I )
dat <- sim.raschtype( rnorm( N ) , b )
colnames(dat) <- paste( "I" , 1:I , sep="")
# JML estimation of the Rasch model
mod1 <- rasch.jml( dat )
summary(mod1)
# MML estimation with rasch.mml2 function
mod2 <- rasch.mml2( dat )
summary(mod2)
# Pairwise method of Fischer
mod3 <- rasch.pairwise( dat )
summary(mod3)
# JML estimation in TAM
library(TAM)
mod4 <- TAM::tam.jml2( resp=dat )
#******
# item parameter constraints in JML estimation
# fix item difficulties: b[4]=-.76 and b[6]= .10
constraints <- matrix( cbind( 4 , -.76 ,
6 , .10 ) ,
ncol=2 , byrow=TRUE )
mod4 <- rasch.jml( dat , constraints = constraints )
summary(mod4)
# For constrained item parameters, it this not obvious
# how to calculate a 'right correction' of item parameter bias
Run the code above in your browser using DataLab