#############################################################################
# EXAMPLE 1: Small numeric example for Rasch testlet model
#############################################################################
# Rasch testlet model with 9 items contained into 3 testlets
# the third testlet has essentially no dependence and therefore
# no testlet variance
testlet <- rep( 1:3 , each=3 )
a1 <- rep(1 , 9 ) # item slopes first dimension
d1 <- rep( c(-1.25,0,1.5) , 3 ) # item intercepts
a.testlet <- rep( 1 , 9 ) # item slopes testlets
var.testlet <- c( .8 , .2 , 0 ) # testlet variances
# apply function
res <- testlet.marginalized( a1=a1 , d1=d1 , testlet=testlet ,
a.testlet=a.testlet , var.testlet=var.testlet )
round( res , 2 )
## item testlet a1 d1 a.testlet var.testlet a1_marg d1_marg
## 1 1 1 1 -1.25 1 0.8 0.89 -1.11
## 2 2 1 1 0.00 1 0.8 0.89 0.00
## 3 3 1 1 1.50 1 0.8 0.89 1.33
## 4 4 2 1 -1.25 1 0.2 0.97 -1.21
## 5 5 2 1 0.00 1 0.2 0.97 0.00
## 6 6 2 1 1.50 1 0.2 0.97 1.45
## 7 7 3 1 -1.25 1 0.0 1.00 -1.25
## 8 8 3 1 0.00 1 0.0 1.00 0.00
## 9 9 3 1 1.50 1 0.0 1.00 1.50
#############################################################################
# EXAMPLE 2: Dataset reading
#############################################################################
library(TAM)
data(data.read)
resp <- data.read
maxiter <- 100
# Model 1: Rasch testlet model with 3 testlets
dims <- substring( colnames(resp),1,1 ) # define dimensions
mod1 <- TAM::tam.fa( resp=resp , irtmodel="bifactor1" , dims=dims ,
control=list(maxiter=maxiter) )
# marginal item parameters
res1 <- testlet.marginalized( mod1 )
#***
# Model 2: estimate bifactor model but assume that items 3 and 5 do not load on
# specific factors
dims1 <- dims
dims1[c(3,5)] <- NA
mod2 <- TAM::tam.fa( resp=resp , irtmodel="bifactor2" , dims=dims1 ,
control=list(maxiter=maxiter) )
res2 <- testlet.marginalized( mod2 )
res2
Run the code above in your browser using DataLab