Learn R Programming

sirt (version 3.0-32)

sirt-utilities: Utility Functions in sirt

Description

Utility functions in sirt.

Usage

# bounds entries in a vector
bounds_parameters( pars, lower=NULL, upper=NULL)

# improper density function which always returns a value of 1 dimproper(x)

# generalized inverse of a symmetric function ginverse_sym(A, eps=1E-8)

# hard thresholding function hard_thresholding(x, lambda)

# soft thresholding function soft_thresholding(x, lambda)

# power function x^a, like in Cpp pow(x, a)

# trace of a matrix tracemat(A)

# plyr::rbind.fill implementation in sirt sirt_rbind_fill(x, y)

# Fisher-z transformation, see psych::fisherz sirt_fisherz(rho) # inverse Fisher-z transformation, see psych::fisherz2r sirt_antifisherz(z)

# attach all elements in a list in a specified environment sirt_attach_list_elements(x, envir)

# switch between stats::optim and stats::nlminb sirt_optimizer(optimizer, par, fn, grad=NULL, method="L-BFGS-B", ...)

# print objects in a summary sirt_summary_print_objects(obji, from=NULL, to=NULL, digits=3, rownames_null=TRUE) # print package version and R session sirt_summary_print_package_rsession(pack) # print package version sirt_summary_print_package(pack) # print R session sirt_summary_print_rsession() # print call sirt_summary_print_call(CALL)

Arguments

pars

Numeric vector

lower

Numeric vector

upper

Numeric vector

x

Numeric vector or a matrix or a list

eps

Numerical. Shrinkage parameter of eigenvalue in ginverse_sym

a

Numeric vector

lambda

Numeric value

A

Matrix

y

Matrix

rho

Numeric

z

Numeric

envir

Environment

optimizer

Can be optim or nlminb

par

Initial parameter

fn

Function

grad

Gradient

method

Optimization method

Further arguments to be passed

obji

Data frame

from

Integer

to

Integer

digits

Integer

rownames_null

Logical

pack

Package name

CALL

Call statement

Examples

Run this code
# NOT RUN {
#############################################################################
## EXAMPLE 1: Trace of a matrix
#############################################################################

set.seed(86)
A <- matrix( stats::runif(4), 2,2 )
tracemat(A)
sum(diag(A))    #=sirt::tracemat(A)

#############################################################################
## EXAMPLE 2: Power function
#############################################################################

x <- 2.3
a <- 1.7
pow(x=x,a=a)
x^a            #=sirt::pow(x,a)

#############################################################################
## EXAMPLE 3: Soft and hard thresholding function (e.g. in LASSO estimation)
#############################################################################

x <- seq( -2, 2, length=100 )
y <- sirt::soft_thresholding( x, lambda=.5)
graphics::plot( x, y, type="l")

z <- sirt::hard_thresholding( x, lambda=.5)
graphics::lines( x, z, lty=2, col=2)

#############################################################################
## EXAMPLE 4: Bounds on parameters
#############################################################################

pars <- c( .721, .346 )
bounds_parameters( pars=pars, lower=c(-Inf, .5), upper=c(Inf,1) )
# }

Run the code above in your browser using DataLab