The format of the dataset data.si01
is:
'data.frame': 1857 obs. of 3 variables:
$ idgroup: int 1 1 1 1 1 1 1 1 1 1 ...
$ item1 : int NA NA NA NA NA NA NA NA NA NA ...
$ item2 : int 4 4 4 4 4 4 4 2 4 4 ...
The dataset data.si02
is the Stouffer-Toby-dataset published
in Lindsay, Clogg and Grego (1991; Table 1, p.97, Cross-classification A):
List of 2
$ data : num [1:16, 1:4] 1 0 1 0 1 0 1 0 1 0 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:4] "I1" "I2" "I3" "I4"
$ weights: num [1:16] 42 1 6 2 6 1 7 2 23 4 ...
The format of the dataset data.si03
(containing item
parameters of two studies) is:
'data.frame': 27 obs. of 3 variables:
$ item : Factor w/ 27 levels "M1","M10","M11",..: 1 12 21 22 ...
$ b_study1: num 0.297 1.163 0.151 -0.855 -1.653 ...
$ b_study2: num 0.72 1.118 0.351 -0.861 -1.593 ...
The dataset data.si04
is adapted from Bartolucci, Montanari
and Pandolfi (2012; Table 4, Table 7). The data contains 4999 persons,
79 items on 5 dimensions. See rasch.mirtlc
for using the
data in an analysis.
List of 3
$ data : num [1:4999, 1:79] 0 1 1 0 1 1 0 0 1 1 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:79] "A01" "A02" "A03" "A04" ...
$ itempars :'data.frame': 79 obs. of 4 variables:
..$ item : Factor w/ 79 levels "A01","A02","A03",..: 1 2 3 4 5 6 7 8 9 10 ...
..$ dim : num [1:79] 1 1 1 1 1 1 1 1 1 1 ...
..$ gamma : num [1:79] 1 1 1 1 1 1 1 1 1 1 ...
..$ gamma.beta: num [1:79] -0.189 0.25 0.758 1.695 1.022 ...
$ distribution: num [1:9, 1:7] 1 2 3 4 5 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:7] "class" "A" "B" "C" ...
The dataset data.si05
contains double ratings of two
exchangeable raters for three items which are in Ex1
, Ex2
and Ex3
, respectively.
List of 3
$ Ex1:'data.frame': 199 obs. of 2 variables:
..$ C7040: num [1:199] NA 1 0 1 1 0 0 0 1 0 ...
..$ C7041: num [1:199] 1 1 0 0 0 0 0 0 1 0 ...
$ Ex2:'data.frame': 2000 obs. of 2 variables:
..$ rater1: num [1:2000] 2 0 3 1 2 2 0 0 0 0 ...
..$ rater2: num [1:2000] 4 1 3 2 1 0 0 0 0 2 ...
$ Ex3:'data.frame': 2000 obs. of 2 variables:
..$ rater1: num [1:2000] 5 1 6 2 3 3 0 0 0 0 ...
..$ rater2: num [1:2000] 7 2 6 3 2 1 0 1 0 3 ...
The dataset data.si06
contains multiple choice item
responses. The correct alternative is denoted as 0, distractors
are indicated by the codes 1, 2 or 3.
'data.frame': 4441 obs. of 14 variables:
$ WV01: num 0 0 0 0 0 0 0 0 0 3 ...
$ WV02: num 0 0 0 3 0 0 0 0 0 1 ...
$ WV03: num 0 1 0 0 0 0 0 0 0 0 ...
$ WV04: num 0 0 0 0 0 0 0 0 0 1 ...
$ WV05: num 3 1 1 1 0 0 1 1 0 2 ...
$ WV06: num 0 1 3 0 0 0 2 0 0 1 ...
$ WV07: num 0 0 0 0 0 0 0 0 0 0 ...
$ WV08: num 0 1 1 0 0 0 0 0 0 0 ...
$ WV09: num 0 0 0 0 0 0 0 0 0 2 ...
$ WV10: num 1 1 3 0 0 2 0 0 0 0 ...
$ WV11: num 0 0 0 0 0 0 0 0 0 0 ...
$ WV12: num 0 0 0 2 0 0 2 0 0 0 ...
$ WV13: num 3 1 1 3 0 0 3 0 0 0 ...
$ WV14: num 3 1 2 3 0 3 1 3 3 0 ...
The dataset data.si07
contains parameters of the empirical illustration
of DeCarlo (XXXX). The simulation function sim_fun
can be used for
simulating data from the IRSDT model (see DeCarlo, XXXX)
List of 3
$ pars :'data.frame': 16 obs. of 3 variables:
..$ item: Factor w/ 16 levels "I01","I02","I03",..: 1 2 3 4 5 6 7 8 9 10 ...
..$ b : num [1:16] -1.1 -0.18 1.44 1.78 -1.19 0.45 -1.12 0.33 0.82 -0.43 ...
..$ d : num [1:16] 2.69 4.6 6.1 3.11 3.2 ...
$ trait :'data.frame': 20 obs. of 2 variables:
..$ x : num [1:20] 0.025 0.075 0.125 0.175 0.225 0.275 0.325 0.375 0.425 0.475 ...
..$ prob: num [1:20] 0.0238 0.1267 0.105 0.0594 0.0548 ...
$ sim_fun:function (lambda, b, d, items)
The dataset data.si08
contains 5 items with respect to knowledge
about lung cancer and the kind of information acquisition (Goodman, 1970;
see also Rasch, Kubinger & Yanagida, 2011).
L1
: reading newspapers, L2
: listening radio,
L3
: reading books and magazines,
L4
: attending talks, L5
: knowledge about lung cancer
'data.frame': 32 obs. of 6 variables:
$ L1 : num 1 1 1 1 1 1 1 1 1 1 ...
$ L2 : num 1 1 1 1 1 1 1 1 0 0 ...
$ L3 : num 1 1 1 1 0 0 0 0 1 1 ...
$ L4 : num 1 1 0 0 1 1 0 0 1 1 ...
$ L5 : num 1 0 1 0 1 0 1 0 1 0 ...
$ wgt: num 23 8 102 67 8 4 35 59 27 18 ...