The function invariance.alignment
performs alignment under approximate
invariance for
The function invariance_alignment_constraints
postprocesses the output of the
invariance.alignment
function and estimates item parameters under equality
constraints for prespecified absolute values of parameter tolerance.
The function invariance_alignment_simulate
simulates a one-factor model
for multiple groups for given matrices of
The function invariance_alignment_cfa_config
estimates one-factor
models separately for each group as a preliminary step for invariance
alignment (see Example 6). Sampling weights are accommodated by the
argument weights
.
invariance.alignment(lambda, nu, wgt=NULL, align.scale=c(1, 1),
align.pow=c(.5, .5), eps=1e-3, psi0.init=NULL, alpha0.init=NULL, center=FALSE,
optimizer="optim", fixed=NULL, ...)# S3 method for invariance.alignment
summary(object, digits=3, file=NULL, ...)
invariance_alignment_constraints(model, lambda_parm_tol, nu_parm_tol )
# S3 method for invariance_alignment_constraints
summary(object, digits=3, file=NULL, ...)
invariance_alignment_simulate(nu, lambda, err_var, mu, sigma, N)
invariance_alignment_cfa_config(dat, group, weights=NULL, verbose=FALSE, ...)
A
A
A
A vector of length two containing scale parameter
A vector of length two containing power
A parameter in the optimization function
An optional vector of initial
An optional vector of initial
Logical indicating whether estimated means and standard deviations should be centered.
Name of the optimizer chosen for alignment. Options are
"optim"
(using stats::optim
)
or "nlminb"
(using stats::nlminb
).
Logical indicating whether SD of first group should
be fixed to one. If fixed=FALSE
, the product of all SDs is set to one.
If NULL
, then fixed
is automatically chosen by default. For many groups,
fixed=FALSE
is chosen.
Object of class invariance.alignment
Number of digits used for rounding
Optional file name in which summary should be sunk
Further optional arguments to be passed
Model of class invariance.alignment
Parameter tolerance for
Parameter tolerance for
Error variance
Vector of means
Vector of standard deviations
Vector of sample sizes per group
Dataset with items
Vector containing group indicators
Optional vector of sampling weights
Logical indicating whether progress should be printed
A list with following entries
Aligned distribution parameters
Aligned item parameters for all groups
Effect sizes of approximate invariance
Aligned
Residuals of
Aligned
Residuals of
Number of iterations for
Minimum optimization value
Used alignment scale parameters
Used alignment power parameters
For
The alignment procedure searches means
For identification reasons, the product
Note that Asparouhov and Muthen (2014) use align.scale
)
and align.pow
).
In case of
Effect sizes of approximate invariance based on es.invariance
. In addition,
the average correlation of aligned item parameters among groups (rbar
)
is reported.
Metric invariance means that all aligned item loadings
Asparouhov, T., & Muthen, B. (2014). Multiple-group factor analysis alignment. Structural Equation Modeling, 21(4), 1-14. 10.1080/10705511.2014.919210
Byrne, B. M., & van de Vijver, F. J. R. (2017). The maximum likelihood alignment approach to testing for approximate measurement invariance: A paradigmatic cross-cultural application. Psicothema, 29(4), 539-551. 10.7334/psicothema2017.178
DeMars, C. E. (2019). Alignment as an alternative to anchor purification in DIF analyses. Structural Equation Modeling, xxx(x), xxx-xxx. 10.1080/10705511.2019.1617151
Finch, W. H. (2016). Detection of differential item functioning for more than two groups: A Monte Carlo comparison of methods. Applied Measurement in Education, 29,(1), 30-45, 10.1080/08957347.2015.1102916
Fischer, R., & Karl, J. A. (2019). A primer to (cross-cultural) multi-group invariance testing possibilities in R. Frontiers in Psychology | Cultural Psychology, 10:1507. 10.3389/fpsyg.2019.01507
Flake, J. K., & McCoach, D. B. (2018). An investigation of the alignment method with polytomous indicators under conditions of partial measurement invariance. Structural Equation Modeling, 25(1), 56-70. 10.1080/10705511.2017.1374187
Kim, E. S., Cao, C., Wang, Y., & Nguyen, D. T. (2017). Measurement invariance testing with many groups: A comparison of five approaches. Structural Equation Modeling, 24(4), 524-544. 10.1080/10705511.2017.1304822
Marsh, H. W., Guo, J., Parker, P. D., Nagengast, B., Asparouhov, T., Muthen, B., & Dicke, T. (2018). What to do when scalar invariance fails: The extended alignment method for multi-group factor analysis comparison of latent means across many groups. Psychological Methods, 23(3), 524-545. 10.1037/met0000113
Muthen, B., & Asparouhov, T. (2014). IRT studies of many groups: The alignment method. Frontiers in Psychology | Quantitative Psychology and Measurement, 5:978. 10.3389/fpsyg.2014.00978
Muthen, B., & Asparouhov, T. (2018). Recent methods for the study of measurement invariance with many groups: Alignment and random effects. Sociological Methods & Research, 47(4), 637-664. 10.1177/0049124117701488
Oelker, M. R., & Tutz, G. (2017). A uniform framework for the combination of penalties in generalized structured models. Advances in Data Analysis and Classification, 11(1), 97-120. 10.1007/s11634-015-0205-y
Pokropek, A., Davidov, E., & Schmidt, P. (2019). A Monte Carlo simulation study to assess the appropriateness of traditional and newer approaches to test for measurement invariance. Structural Equation Modeling, 26(5), 724-744. 10.1080/10705511.2018.1561293
Vandenberg, R. J., & Lance, C. E. (2000). A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organizational research. Organizational Research Methods, 3, 4-70. 10.1177/109442810031002s
For IRT linking see also linking.haberman
or
TAM::tam.linking
.
For modeling random item effects for loadings and intercepts
see mcmc.2pno.ml
.
# NOT RUN {
#############################################################################
# EXAMPLE 1: Item parameters cultural activities
#############################################################################
data(data.activity.itempars, package="sirt")
lambda <- data.activity.itempars$lambda
nu <- data.activity.itempars$nu
Ng <- data.activity.itempars$N
wgt <- matrix( sqrt(Ng), length(Ng), ncol(nu) )
#***
# Model 1: Alignment using a quadratic loss function
mod1 <- sirt::invariance.alignment( lambda, nu, wgt )
summary(mod1)
#****
# Model 2: Different powers for alignment
mod2 <- sirt::invariance.alignment( lambda, nu, wgt, align.pow=c(.5,1),
align.scale=c(.95,.95))
summary(mod2)
# compare means from Models 1 and 2
plot( mod1$pars$alpha0, mod2$pars$alpha0, pch=16,
xlab="M (Model 1)", ylab="M (Model 2)", xlim=c(-.3,.3), ylim=c(-.3,.3) )
lines( c(-1,1), c(-1,1), col="gray")
round( cbind( mod1$pars$alpha0, mod2$pars$alpha0 ), 3 )
round( mod1$nu.resid, 3)
round( mod2$nu.resid,3 )
# L0 penalty
mod2b <- sirt::invariance.alignment( lambda, nu, wgt, align.pow=c(0,0),
align.scale=c(.3,.3))
summary(mod2b)
#****
# Model 3: Low powers for alignment of scale and power
# Note that setting increment.factor larger than 1 seems necessary
mod3 <- sirt::invariance.alignment( lambda, nu, wgt, align.pow=c(.5,.75),
align.scale=c(.55,.55), psi0.init=mod1$psi0, alpha0.init=mod1$alpha0 )
summary(mod3)
# compare mean and SD estimates of Models 1 and 3
plot( mod1$pars$alpha0, mod3$pars$alpha0, pch=16)
plot( mod1$pars$psi0, mod3$pars$psi0, pch=16)
# compare residuals for Models 1 and 3
# plot lambda
plot( abs(as.vector(mod1$lambda.resid)), abs(as.vector(mod3$lambda.resid)),
pch=16, xlab="Residuals lambda (Model 1)",
ylab="Residuals lambda (Model 3)", xlim=c(0,.1), ylim=c(0,.1))
lines( c(-3,3),c(-3,3), col="gray")
# plot nu
plot( abs(as.vector(mod1$nu.resid)), abs(as.vector(mod3$nu.resid)),
pch=16, xlab="Residuals nu (Model 1)", ylab="Residuals nu (Model 3)",
xlim=c(0,.4),ylim=c(0,.4))
lines( c(-3,3),c(-3,3), col="gray")
# }
# NOT RUN {
#############################################################################
# EXAMPLE 2: Comparison 4 groups | data.inv4gr
#############################################################################
data(data.inv4gr)
dat <- data.inv4gr
miceadds::library_install("semTools")
model1 <- "
F=~ I01 + I02 + I03 + I04 + I05 + I06 + I07 + I08 + I09 + I10 + I11
F ~~ 1*F
"
res <- semTools::measurementInvariance(model1, std.lv=TRUE, data=dat, group="group")
## Measurement invariance tests:
##
## Model 1: configural invariance:
## chisq df pvalue cfi rmsea bic
## 162.084 176.000 0.766 1.000 0.000 95428.025
##
## Model 2: weak invariance (equal loadings):
## chisq df pvalue cfi rmsea bic
## 519.598 209.000 0.000 0.973 0.039 95511.835
##
## [Model 1 versus model 2]
## delta.chisq delta.df delta.p.value delta.cfi
## 357.514 33.000 0.000 0.027
##
## Model 3: strong invariance (equal loadings + intercepts):
## chisq df pvalue cfi rmsea bic
## 2197.260 239.000 0.000 0.828 0.091 96940.676
##
## [Model 1 versus model 3]
## delta.chisq delta.df delta.p.value delta.cfi
## 2035.176 63.000 0.000 0.172
##
## [Model 2 versus model 3]
## delta.chisq delta.df delta.p.value delta.cfi
## 1677.662 30.000 0.000 0.144
##
# extract item parameters separate group analyses
ipars <- lavaan::parameterEstimates(res$fit.configural)
# extract lambda's: groups are in rows, items in columns
lambda <- matrix( ipars[ ipars$op=="=~", "est"], nrow=4, byrow=TRUE)
colnames(lambda) <- colnames(dat)[-1]
# extract nu's
nu <- matrix( ipars[ ipars$op=="~1" & ipars$se !=0, "est" ], nrow=4, byrow=TRUE)
colnames(nu) <- colnames(dat)[-1]
# Model 1: least squares optimization
mod1 <- sirt::invariance.alignment( lambda=lambda, nu=nu )
summary(mod1)
## Effect Sizes of Approximate Invariance
## loadings intercepts
## R2 0.9826 0.9972
## sqrtU2 0.1319 0.0526
## rbar 0.6237 0.7821
## -----------------------------------------------------------------
## Group Means and Standard Deviations
## alpha0 psi0
## 1 0.000 0.965
## 2 -0.105 1.098
## 3 -0.081 1.011
## 4 0.171 0.935
# Model 2: sparse target function
mod2 <- sirt::invariance.alignment( lambda=lambda, nu=nu, align.pow=c(.5,.5) )
summary(mod2)
## Effect Sizes of Approximate Invariance
## loadings intercepts
## R2 0.9824 0.9972
## sqrtU2 0.1327 0.0529
## rbar 0.6237 0.7856
## -----------------------------------------------------------------
## Group Means and Standard Deviations
## alpha0 psi0
## 1 -0.002 0.965
## 2 -0.107 1.098
## 3 -0.083 1.011
## 4 0.170 0.935
#############################################################################
# EXAMPLE 3: European Social Survey data.ess2005
#############################################################################
data(data.ess2005)
lambda <- data.ess2005$lambda
nu <- data.ess2005$nu
# Model 1: least squares optimization
mod1 <- sirt::invariance.alignment( lambda=lambda, nu=nu, align.pow=c(2,2) )
summary(mod1)
# Model 2: sparse target function and definition of scales
mod2 <- sirt::invariance.alignment( lambda=lambda, nu=nu, control=list(trace=2) )
summary(mod2)
#############################################################################
# EXAMPLE 4: Linking with item parameters containing outliers
#############################################################################
# see Help file in linking.robust
# simulate some item difficulties in the Rasch model
I <- 38
set.seed(18785)
itempars <- data.frame("item"=paste0("I",1:I) )
itempars$study1 <- stats::rnorm( I, mean=.3, sd=1.4 )
# simulate DIF effects plus some outliers
bdif <- stats::rnorm(I, mean=.4, sd=.09)+( stats::runif(I)>.9 )* rep( 1*c(-1,1)+.4, each=I/2 )
itempars$study2 <- itempars$study1 + bdif
# create input for function invariance.alignment
nu <- t( itempars[,2:3] )
colnames(nu) <- itempars$item
lambda <- 1+0*nu
# linking using least squares optimization
mod1 <- sirt::invariance.alignment( lambda=lambda, nu=nu )
summary(mod1)
## Group Means and Standard Deviations
## alpha0 psi0
## study1 -0.286 1
## study2 0.286 1
# linking using powers of .5
mod2 <- sirt::invariance.alignment( lambda=lambda, nu=nu, align.pow=c(1,1) )
summary(mod2)
## Group Means and Standard Deviations
## alpha0 psi0
## study1 -0.213 1
## study2 0.213 1
# linking using powers of .25
mod3 <- sirt::invariance.alignment( lambda=lambda, nu=nu, align.pow=c(.5,.5) )
summary(mod3)
## Group Means and Standard Deviations
## alpha0 psi0
## study1 -0.207 1
## study2 0.207 1
#############################################################################
# EXAMPLE 5: Linking gender groups with data.math
#############################################################################
data(data.math)
dat <- data.math$data
dat.male <- dat[ dat$female==0, substring( colnames(dat),1,1)=="M" ]
dat.female <- dat[ dat$female==1, substring( colnames(dat),1,1)=="M" ]
#*************************
# Model 1: Linking using the Rasch model
mod1m <- sirt::rasch.mml2( dat.male )
mod1f <- sirt::rasch.mml2( dat.female )
# create objects for invariance.alignment
nu <- rbind( mod1m$item$thresh, mod1f$item$thresh )
colnames(nu) <- mod1m$item$item
rownames(nu) <- c("male", "female")
lambda <- 1+0*nu
# mean of item difficulties
round( rowMeans(nu), 3 )
# Linking using least squares optimization
res1a <- sirt::invariance.alignment( lambda, nu, align.scale=c( .3, .5 ) )
summary(res1a)
# Linking using optimization with absolute value function (pow=.5)
res1b <- sirt::invariance.alignment( lambda, nu, align.scale=c( .3, .5 ),
align.pow=c(1,1) )
summary(res1b)
#-- compare results with Haberman linking
I <- ncol(dat.male)
itempartable <- data.frame( "study"=rep( c("male", "female"), each=I ) )
itempartable$item <- c( paste0(mod1m$item$item), paste0(mod1f$item$item) )
itempartable$a <- 1
itempartable$b <- c( mod1m$item$b, mod1f$item$b )
# estimate linking parameters
res1c <- sirt::linking.haberman( itempars=itempartable )
#-- results of sirt::equating.rasch
x <- itempartable[ 1:I, c("item", "b") ]
y <- itempartable[ I + 1:I, c("item", "b") ]
res1d <- sirt::equating.rasch( x, y )
round( res1d$B.est, 3 )
## Mean.Mean Haebara Stocking.Lord
## 1 0.032 0.032 0.029
#*************************
# Model 2: Linking using the 2PL model
I <- ncol(dat.male)
mod2m <- sirt::rasch.mml2( dat.male, est.a=1:I)
mod2f <- sirt::rasch.mml2( dat.female, est.a=1:I)
# create objects for invariance.alignment
nu <- rbind( mod2m$item$thresh, mod2f$item$thresh )
colnames(nu) <- mod2m$item$item
rownames(nu) <- c("male", "female")
lambda <- rbind( mod2m$item$a, mod2f$item$a )
colnames(lambda) <- mod2m$item$item
rownames(lambda) <- c("male", "female")
res2a <- sirt::invariance.alignment( lambda, nu, align.scale=c( .3, .5 ) )
summary(res2a)
res2b <- sirt::invariance.alignment( lambda, nu, align.scale=c( .3, .5 ),
align.pow=c(1,1) )
summary(res2b)
# compare results with Haberman linking
I <- ncol(dat.male)
itempartable <- data.frame( "study"=rep( c("male", "female"), each=I ) )
itempartable$item <- c( paste0(mod2m$item$item), paste0(mod2f$item$item ) )
itempartable$a <- c( mod2m$item$a, mod2f$item$a )
itempartable$b <- c( mod2m$item$b, mod2f$item$b )
# estimate linking parameters
res2c <- sirt::linking.haberman( itempars=itempartable )
#############################################################################
# EXAMPLE 6: Data from Asparouhov & Muthen (2014) simulation study
#############################################################################
G <- 3 # number of groups
I <- 5 # number of items
# define lambda and nu parameters
lambda <- matrix(1, nrow=G, ncol=I)
nu <- matrix(0, nrow=G, ncol=I)
# define size of noninvariance
dif <- 1
#- 1st group: N(0,1)
lambda[1,3] <- 1+dif*.4; nu[1,5] <- dif*.5
#- 2nd group: N(0.3,1.5)
gg <- 2 ; mu <- .3; sigma <- sqrt(1.5)
lambda[gg,5] <- 1-.5*dif; nu[gg,1] <- -.5*dif
nu[gg,] <- nu[gg,] + mu*lambda[gg,]
lambda[gg,] <- lambda[gg,] * sigma
#- 3nd group: N(.8,1.2)
gg <- 3 ; mu <- .8; sigma <- sqrt(1.2)
lambda[gg,4] <- 1-.7*dif; nu[gg,2] <- -.5*dif
nu[gg,] <- nu[gg,] + mu*lambda[gg,]
lambda[gg,] <- lambda[gg,] * sigma
# define alignment scale
align.scale <- c(.2,.4) # Asparouhov and Muthen use c(1,1)
# define alignment powers
align.pow <- c(.5,.5) # as in Asparouhov and Muthen
#*** estimate alignment parameters
mod1 <- sirt::invariance.alignment( lambda, nu, eps=.01, optimizer="optim",
align.scale=align.scale, align.pow=align.pow, center=FALSE )
summary(mod1)
#--- find parameter constraints for prespecified tolerance
cmod1 <- sirt::invariance_alignment_constraints(model=mod1, nu_parm_tol=.4,
lambda_parm_tol=.2 )
summary(cmod1)
#############################################################################
# EXAMPLE 7: Similar to Example 6, but with data simulation and CFA estimation
#############################################################################
#--- data simulation
set.seed(65)
G <- 3 # number of groups
I <- 5 # number of items
# define lambda and nu parameters
lambda <- matrix(1, nrow=G, ncol=I)
nu <- matrix(0, nrow=G, ncol=I)
err_var <- matrix(1, nrow=G, ncol=I)
# define size of noninvariance
dif <- 1
#- 1st group: N(0,1)
lambda[1,3] <- 1+dif*.4; nu[1,5] <- dif*.5
#- 2nd group: N(0.3,1.5)
gg <- 2 ;
lambda[gg,5] <- 1-.5*dif; nu[gg,1] <- -.5*dif
#- 3nd group: N(.8,1.2)
gg <- 3
lambda[gg,4] <- 1-.7*dif; nu[gg,2] <- -.5*dif
#- define distributions of groups
mu <- c(0,.3,.8)
sigma <- sqrt(c(1,1.5,1.2))
N <- rep(1000,3) # sample sizes per group
#* simulate data
dat <- sirt::invariance_alignment_simulate(nu, lambda, err_var, mu, sigma, N)
head(dat)
#--- estimate CFA models
pars <- sirt::invariance_alignment_cfa_config(dat[,-1], group=dat$group)
print(pars)
#--- invariance alignment
# define alignment scale
align.scale <- c(.2,.4)
# define alignment powers
align.pow <- c(.5,.5)
mod1 <- sirt::invariance.alignment( lambda=pars$lambda, nu=pars$nu, eps=.01,
optimizer="optim", align.scale=align.scale, align.pow=align.pow, center=FALSE)
#* find parameter constraints for prespecified tolerance
cmod1 <- sirt::invariance_alignment_constraints(model=mod1, nu_parm_tol=.4,
lambda_parm_tol=.2 )
summary(cmod1)
#--- estimate CFA models with sampling weights
#* simulate weights
weights <- stats::runif(sum(N), 0, 2)
#* estimate models
pars2 <- sirt::invariance_alignment_cfa_config(dat[,-1], group=dat$group, weights=weights)
print(pars2$nu)
print(pars$nu)
# }
Run the code above in your browser using DataLab