This function calculates integration nodes based on the multivariate normal distribution with zero mean vector and identity covariance matrix. See Pan and Thompson (2007) and Gonzales et al. (2006) for details.
qmc.nodes(snodes, ndim)
Number of integration nodes
Number of dimensions
A matrix of integration points
Gonzalez, J., Tuerlinckx, F., De Boeck, P., & Cools, R. (2006). Numerical integration in logistic-normal models. Computational Statistics & Data Analysis, 51, 1535-1548.
Pan, J., & Thompson, R. (2007). Quasi-Monte Carlo estimation in generalized linear mixed models. Computational Statistics & Data Analysis, 51, 5765-5775.
# NOT RUN {
## some toy examples
# 5 nodes on one dimension
qmc.nodes( snodes=5, ndim=1 )
## [,1]
## [1,] 0.0000000
## [2,] -0.3863753
## [3,] 0.8409238
## [4,] -0.8426682
## [5,] 0.3850568
# 7 nodes on two dimensions
qmc.nodes( snodes=7, ndim=2 )
## [,1] [,2]
## [1,] 0.00000000 -0.43072730
## [2,] -0.38637529 0.79736332
## [3,] 0.84092380 -1.73230641
## [4,] -0.84266815 -0.03840544
## [5,] 0.38505683 1.51466109
## [6,] -0.00122394 -0.86704605
## [7,] 1.35539115 0.33491073
# }
Run the code above in your browser using DataLab