Last chance! 50% off unlimited learning
Sale ends in
This function computes an analytical bias correction for the Rasch model according to the method of Arellano and Hahn (2007).
rasch.jml.biascorr(jmlobj,itemfac=NULL)
An object which is the output of the rasch.jml
function
Number of items which are used for bias correction. By default it is the average number of item responses per person.
A list with following entries
Matrix of item difficulty estimates. The column
b.analytcorr1
contains item difficulties by analytical bias
correction of Method 1 in Arellano and Hahn (2007) whereas b.analytcorr2
corresponds to Method 2.
Estimated bias by Method 1
Estimated bias by Method 2
Number of items which are used as the factor for bias correction
Arellano, M., & Hahn, J. (2007). Understanding bias in nonlinear panel models: Some recent developments. In R. Blundell, W. Newey & T. Persson (Eds.): Advances in Economics and Econometrics, Ninth World Congress, Cambridge University Press.
See rasch.jml.jackknife1
for bias correction based on
Jackknife.
See also the bife R package for analytical bias corrections.
# NOT RUN {
#############################################################################
# EXAMPLE 1: Dataset Reading
#############################################################################
data(data.read)
dat <- data( data.read )
# estimate Rasch model
mod <- sirt::rasch.jml( data.read )
# JML with analytical bias correction
res1 <- sirt::rasch.jml.biascorr( jmlobj=mod )
print( res1$b.biascorr, digits=3 )
## b.JML b.JMLcorr b.analytcorr1 b.analytcorr2
## 1 -2.0086 -1.8412 -1.908 -1.922
## 2 -1.1121 -1.0194 -1.078 -1.088
## 3 -0.0718 -0.0658 -0.150 -0.127
## 4 0.5457 0.5002 0.393 0.431
## 5 -0.9504 -0.8712 -0.937 -0.936
## [...]
# }
Run the code above in your browser using DataLab