sirt (version 3.9-4)

rasch.mirtlc: Multidimensional Latent Class 1PL and 2PL Model

Description

This function estimates the multidimensional latent class Rasch (1PL) and 2PL model (Bartolucci, 2007; Bartolucci, Montanari & Pandolfi, 2012) for dichotomous data which emerges from the original latent class model (Goodman, 1974) and a multidimensional IRT model.

Usage

rasch.mirtlc(dat, Nclasses=NULL, modeltype="LC", dimensions=NULL,
    group=NULL, weights=rep(1,nrow(dat)), theta.k=NULL, ref.item=NULL,
    distribution.trait=FALSE,  range.b=c(-8,8), range.a=c(.2, 6 ),
    progress=TRUE, glob.conv=10^(-5), conv1=10^(-5), mmliter=1000,
    mstep.maxit=3, seed=0, nstarts=1, fac.iter=.35)

# S3 method for rasch.mirtlc summary(object,...)

# S3 method for rasch.mirtlc anova(object,...)

# S3 method for rasch.mirtlc logLik(object,...)

# S3 method for rasch.mirtlc IRT.irfprob(object,...)

# S3 method for rasch.mirtlc IRT.likelihood(object,...)

# S3 method for rasch.mirtlc IRT.posterior(object,...)

# S3 method for rasch.mirtlc IRT.modelfit(object,...)

# S3 method for IRT.modelfit.rasch.mirtlc summary(object,...)

Arguments

dat

An \(N \times I\) data frame

Nclasses

Number of latent classes. If the trait vector (or matrix) theta.k is specified, then Nclasses is set to the dimension of theta.k.

modeltype

Modeltype. LC is the latent class model of Goodman (1974). MLC1 is the multidimensional latent class Rasch model with item discrimination parameter of 1. MLC2 allows for the estimation of item discriminations.

dimensions

Vector of dimension integers which allocate items to dimensions.

group

A group identifier for multiple group estimation

weights

Vector of sample weights

theta.k

A grid of theta values can be specified if theta should not be estimated. In the one-dimensional case, it must be a vector, in the \(D\)-dimensional case it must be a matrix of dimension \(D\).

ref.item

An optional vector of integers which indicate the items whose intercept and slope are fixed at 0 and 1, respectively.

distribution.trait

A type of the assumed theta distribution can be specified. One alternative is normal for the normal distribution assumption. The options smooth2, smooth3 and smooth4 use the log-linear smoothing of Xu and von Davier (2008) to smooth the distribution up to two, three or four moments, respectively. This function only works in unidimensional models. If a different string is provided as an input (e.g. no), then no smoothing is conducted.

range.b

Range of item difficulties which are allowed for estimation

range.a

Range of item slopes which are allowed for estimation

progress

Display progress? Default is TRUE.

glob.conv

Global relative deviance convergence criterion

conv1

Item parameter convergence criterion

mmliter

Maximum number of iterations

mstep.maxit

Maximum number of iterations within an M step

seed

Set random seed for latent class estimation. A seed can be specified. If the seed is negative, then the function will generate a random seed.

nstarts

If a positive integer is provided, then a nstarts starts with different starting values are conducted.

fac.iter

A parameter between 0 and 1 to control the maximum increment in each iteration. The larger the parameter the more increments will become smaller from iteration to iteration.

object

Object of class rasch.mirtlc

Further arguments to be passed

Value

A list with following entries

pjk

Item probabilities evaluated at discretized ability distribution

rprobs

Item response probabilities like in pjk, but for each item category

pi.k

Estimated trait distribution

theta.k

Discretized ability distribution

item

Estimated item parameters

trait

Estimated ability distribution (theta.k and pi.k)

mean.trait

Estimated mean of ability distribution

sd.trait

Estimated standard deviation of ability distribution

skewness.trait

Estimated skewness of ability distribution

cor.trait

Estimated correlation between abilities (only applies for multidimensional models)

ic

Information criteria

D

Number of dimensions

G

Number of groups

deviance

Deviance

ll

Log-likelihood

Nclasses

Number of classes

modeltype

Used model type

estep.res

Result from E step: f.qk.yi is the individual posterior, f.yi.qk is the individual likelihood

dat

Original data frame

devL

Vector of deviances if multiple random starts were conducted

seedL

Vector of seed if multiple random starts were conducted

iter

Number of iterations

Details

The multidimensional latent class Rasch model (Bartolucci, 2007) is an item response model which combines ideas from latent class analysis and item response models with continuous variables. With modeltype="MLC2" the following \(D\)-dimensional item response model is estimated $$logit P(X_{pi}=1 | \theta_p )=a_i \theta_{pcd}- b_i$$ Besides the item thresholds \(b_i\) and item slopes \(a_i\), for a prespecified number of latent classes \(c=1,\ldots,C\) a set of \(C\) \(D\)-dimensional \(\{\theta_{cd} \}_{cd}\) vectors are estimated. These vectors represent the locations of latent classes. If the user provides a grid of theta distribution theta.k as an argument in rasch.mirtlc, then the ability distribution is fixed.

In the unidimensional Rasch model with \(I\) items, \((I+1)/2\) (if \(I\) odd) or \(I/2 + 1\) (if \(I\) even) trait location parameters are identified (see De Leeuw & Verhelst, 1986; Lindsay et al., 1991; for a review see Formann, 2007).

References

Bartolucci, F. (2007). A class of multidimensional IRT models for testing unidimensionality and clustering items. Psychometrika, 72(2), 141-157. 10.1007/s11336-005-1376-9

Bartolucci, F., Montanari, G. E., & Pandolfi, S. (2012). Dimensionality of the latent structure and item selection via latent class multidimensional IRT models. Psychometrika, 77(4), 782-802. 10.1007/s11336-012-9278-0

De Leeuw, J., & Verhelst, N. (1986). Maximum likelihood estimation in generalized Rasch models. Journal of Educational and Behavioral Statistics, 11(3), 183-196. 10.3102/10769986011003183

Formann, A. K. (2007). (Almost) Equivalence between conditional and mixture maximum likelihood estimates for some models of the Rasch type. In M. von Davier & C. H. Carstensen: Multivariate and Mixture Distribution Rasch Models (pp. 177-189). Springer: New York. 10.1007/978-0-387-49839-3_11

Goodman, L. A. (1974). Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika, 61(2), 215-231. 10.1093/biomet/61.2.215

Lindsay, B., Clogg, C. C., & Grego, J. (1991). Semiparametric estimation in the Rasch model and related exponential response models, including a simple latent class model for item analysis. Journal of the American Statistical Association, 86(413), 96-107. 10.1080/01621459.1991.10475008

Xu, X., & von Davier, M. (2008). Fitting the structured general diagnostic model to NAEP data. ETS Research Report ETS RR-08-27. Princeton, ETS. 10.1002/j.2333-8504.2008.tb02113.x

See Also

See also the CDM::gdm function in the CDM package.

For an assessment of global model fit see modelfit.sirt.

The estimation of the multidimensional latent class item response model for polytomous data can be conducted in the MultiLCIRT package. Latent class analysis can be carried out with poLCA and randomLCA packages.

Examples

Run this code
# NOT RUN {
#############################################################################
# EXAMPLE 1: Reading data
#############################################################################
data( data.read )
dat <- data.read

#***************
# latent class models

# latent class model with 1 class
mod1 <- sirt::rasch.mirtlc( dat, Nclasses=1 )
summary(mod1)

# latent class model with 2 classes
mod2 <- sirt::rasch.mirtlc( dat, Nclasses=2 )
summary(mod2)

# }
# NOT RUN {
# latent class model with 3 classes
mod3 <- sirt::rasch.mirtlc( dat, Nclasses=3, seed=- 30)
summary(mod3)

# extract individual likelihood
lmod3 <- IRT.likelihood(mod3)
str(lmod3)
# extract likelihood value
logLik(mod3)
# extract item response functions
IRT.irfprob(mod3)

# compare models 1, 2 and 3
anova(mod2,mod3)
IRT.compareModels(mod1,mod2,mod3)
# avsolute and relative model fit
smod2 <- IRT.modelfit(mod2)
smod3 <- IRT.modelfit(mod3)
summary(smod2)
IRT.compareModels(smod2,smod3)

# latent class model with 4 classes and 3 starts with different seeds
mod4 <- sirt::rasch.mirtlc( dat, Nclasses=4,seed=-30,  nstarts=3 )
# display different solutions
sort(mod4$devL)
summary(mod4)

# latent class multiple group model
# define group identifier
group <- rep( 1, nrow(dat))
group[ 1:150 ] <- 2
mod5 <- sirt::rasch.mirtlc( dat, Nclasses=3, group=group )
summary(mod5)

#*************
# Unidimensional IRT models with ordered trait

# 1PL model with 3 classes
mod11 <- sirt::rasch.mirtlc( dat, Nclasses=3, modeltype="MLC1", mmliter=30)
summary(mod11)

# 1PL model with 11 classes
mod12 <- sirt::rasch.mirtlc( dat, Nclasses=11,modeltype="MLC1", mmliter=30)
summary(mod12)

# 1PL model with 11 classes and fixed specified theta values
mod13 <- sirt::rasch.mirtlc( dat,  modeltype="MLC1",
             theta.k=seq( -4, 4, len=11 ), mmliter=100)
summary(mod13)

# 1PL model with fixed theta values and normal distribution
mod14 <- sirt::rasch.mirtlc( dat,  modeltype="MLC1", mmliter=30,
             theta.k=seq( -4, 4, len=11 ), distribution.trait="normal")
summary(mod14)

# 1PL model with a smoothed trait distribution (up to 3 moments)
mod15 <- sirt::rasch.mirtlc( dat,  modeltype="MLC1", mmliter=30,
             theta.k=seq( -4, 4, len=11 ),  distribution.trait="smooth3")
summary(mod15)

# 2PL with 3 classes
mod16 <- sirt::rasch.mirtlc( dat, Nclasses=3, modeltype="MLC2", mmliter=30 )
summary(mod16)

# 2PL with fixed theta and smoothed distribution
mod17 <- sirt::rasch.mirtlc( dat, theta.k=seq(-4,4,len=12), mmliter=30,
             modeltype="MLC2", distribution.trait="smooth4"  )
summary(mod17)

# 1PL multiple group model with 8 classes
# define group identifier
group <- rep( 1, nrow(dat))
group[ 1:150 ] <- 2
mod21 <- sirt::rasch.mirtlc( dat, Nclasses=8, modeltype="MLC1", group=group )
summary(mod21)

#***************
# multidimensional latent class IRT models

# define vector of dimensions
dimensions <- rep( 1:3, each=4 )

# 3-dimensional model with 8 classes and seed 145
mod31 <- sirt::rasch.mirtlc( dat, Nclasses=8, mmliter=30,
             modeltype="MLC1", seed=145, dimensions=dimensions )
summary(mod31)

# try the model above with different starting values
mod31s <- sirt::rasch.mirtlc( dat, Nclasses=8,
             modeltype="MLC1", seed=-30, nstarts=30, dimensions=dimensions )
summary(mod31s)

# estimation with fixed theta vectors
#=> 4^3=216 classes
theta.k <- seq(-4, 4, len=6 )
theta.k <- as.matrix( expand.grid( theta.k, theta.k, theta.k ) )
mod32 <- sirt::rasch.mirtlc( dat,  dimensions=dimensions,
              theta.k=theta.k, modeltype="MLC1"  )
summary(mod32)

# 3-dimensional 2PL model
mod33 <- sirt::rasch.mirtlc( dat, dimensions=dimensions, theta.k=theta.k, modeltype="MLC2")
summary(mod33)

#############################################################################
# EXAMPLE 2: Skew trait distribution
#############################################################################
set.seed(789)
N <- 1000   # number of persons
I <- 20     # number of items
theta <- sqrt( exp( stats::rnorm( N ) ) )
theta <- theta - mean(theta )
# calculate skewness of theta distribution
mean( theta^3 ) / stats::sd(theta)^3
# simulate item responses
dat <- sirt::sim.raschtype( theta, b=seq(-2,2,len=I ) )

# normal distribution
mod1 <- sirt::rasch.mirtlc( dat, theta.k=seq(-4,4,len=15), modeltype="MLC1",
               distribution.trait="normal", mmliter=30)

# allow for skew distribution with smoothed distribution
mod2 <- sirt::rasch.mirtlc( dat, theta.k=seq(-4,4,len=15), modeltype="MLC1",
               distribution.trait="smooth3", mmliter=30)

# nonparametric distribution
mod3 <- sirt::rasch.mirtlc( dat, theta.k=seq(-4,4,len=15), modeltype="MLC1", mmliter=30)

summary(mod1)
summary(mod2)
summary(mod3)

#############################################################################
# EXAMPLE 3: Stouffer-Toby dataset data.si02 with 5 items
#############################################################################

data(dat.si02)
dat <- data.si02$data
weights <- data.si02$weights   # extract weights

# Model 1: 2 classes Rasch model
mod1 <- sirt::rasch.mirtlc( dat, Nclasses=2, modeltype="MLC1", weights=weights,
                 ref.item=4, nstarts=5)
summary(mod1)

# Model 2: 3 classes Rasch model: not all parameters are identified
mod2 <- sirt::rasch.mirtlc( dat, Nclasses=3, modeltype="MLC1", weights=weights,
                ref.item=4, nstarts=5)
summary(mod2)

# Model 3: Latent class model with 2 classes
mod3 <- sirt::rasch.mirtlc( dat, Nclasses=2, modeltype="LC", weights=weights, nstarts=5)
summary(mod3)

# Model 4: Rasch model with normal distribution
mod4 <- sirt::rasch.mirtlc( dat,  modeltype="MLC1", weights=weights,
            theta.k=seq( -6, 6, len=21 ), distribution.trait="normal", ref.item=4)
summary(mod4)
# }
# NOT RUN {
#############################################################################
# EXAMPLE 4: 5 classes, 3 dimensions and 27 items
#############################################################################

set.seed(979)
I <- 9
N <- 5000
b <- seq( - 1.5, 1.5, len=I)
b <- rep(b,3)
# define class locations
theta.k <- c(-3.0, -4.1, -2.8, 1.7, 2.3, 1.8,
   0.2, 0.4, -0.1,   2.6, 0.1, -0.9, -1.1,-0.7, 0.9 )

Nclasses <- 5
theta.k0 <- theta.k <- matrix( theta.k, Nclasses, 3, byrow=TRUE )
pi.k <- c(.20,.25,.25,.10,.15)
theta <- theta.k[ rep( 1:Nclasses, round(N*pi.k) ), ]
dimensions <- rep( 1:3, each=I)
# simulate item responses
dat <- matrix( NA, nrow=N, ncol=I*3)
for (ii in 1:(3*I) ){
    dat[,ii] <- 1 * ( stats::runif(N) < stats::plogis( theta[,dimensions[ii]] - b[ii]))
}
colnames(dat) <- paste0( rep( LETTERS[1:3], each=I ), 1:(3*I) )

# estimate model
mod1 <- sirt::rasch.mirtlc( dat, Nclasses=Nclasses, dimensions=dimensions,
             modeltype="MLC1", ref.item=c(5,14,23), glob.conv=.0005, conv1=.0005)

round( cbind( mod1$theta.k, mod1$pi.k ), 3 )
  ##          [,1]   [,2]   [,3]  [,4]
  ##   [1,] -2.776 -3.791 -2.667 0.250
  ##   [2,] -0.989 -0.605  0.957 0.151
  ##   [3,]  0.332  0.418 -0.046 0.246
  ##   [4,]  2.601  0.171 -0.854 0.101
  ##   [5,]  1.791  2.330  1.844 0.252
cbind( theta.k, pi.k )
  ##                       pi.k
  ##   [1,] -3.0 -4.1 -2.8 0.20
  ##   [2,]  1.7  2.3  1.8 0.25
  ##   [3,]  0.2  0.4 -0.1 0.25
  ##   [4,]  2.6  0.1 -0.9 0.10
  ##   [5,] -1.1 -0.7  0.9 0.15

# plot class locations
plot( 1:3, mod1$theta.k[1,], xlim=c(1,3), ylim=c(-5,3), col=1, pch=1, type="n",
    axes=FALSE, xlab="Dimension", ylab="Location")
axis(1, 1:3 ) ;  axis(2) ; axis(4)
for (cc in 1:Nclasses){ # cc <- 1
    lines(1:3, mod1$theta.k[cc,], col=cc, lty=cc )
    points(1:3, mod1$theta.k[cc,], col=cc,  pch=cc )
}

# }
# NOT RUN {
#------
# estimate model with gdm function in CDM package
library(CDM)
# define Q-matrix
Qmatrix <- matrix(0,3*I,3)
Qmatrix[ cbind( 1:(3*I), rep(1:3, each=I) ) ] <- 1

set.seed(9176)
# random starting values for theta locations
theta.k <- matrix( 2*stats::rnorm(5*3), 5, 3 )
colnames(theta.k) <- c("Dim1","Dim2","Dim3")
# try possibly different starting values

# estimate model in CDM
b.constraint  <- cbind( c(5,14,23), 1, 0 )
mod2 <- CDM::gdm( dat, theta.k=theta.k, b.constraint=b.constraint, skillspace="est",
               irtmodel="1PL",  Qmatrix=Qmatrix)
summary(mod2)

#------
# estimate model with MultiLCIRT package
miceadds::library_install("MultiLCIRT")

# define matrix to allocate each item to one dimension
multi1 <- matrix( 1:(3*I), nrow=3, byrow=TRUE )
# define reference items in item-dimension allocation matrix
multi1[ 1, c(1,5)  ] <- c(5,1)
multi1[ 2, c(10,14) - 9  ] <- c(14,9)
multi1[ 3, c(19,23) - 18 ] <- c(23,19)

# Rasch model with 5 latent classes (random start: start=1)
mod3 <- MultiLCIRT::est_multi_poly(S=dat,k=5,       # k=5 ability levels
                start=1,link=1,multi=multi1,tol=10^-5,
                output=TRUE, disp=TRUE, fort=TRUE)
# estimated location points and class probabilities in MultiLCIRT
cbind( t( mod3$Th ), mod3$piv )
# compare results with rasch.mirtlc
cbind( mod1$theta.k, mod1$pi.k )
# simulated data parameters
cbind( theta.k, pi.k )

#----
# estimate model with cutomized input in mirt
library(mirt)
#-- define Theta design matrix for 5 classes
Theta <- diag(5)
Theta <- cbind( Theta, Theta, Theta )
r1 <- rownames(Theta) <- paste0("C",1:5)
colnames(Theta) <- c( paste0(r1, "D1"), paste0(r1, "D2"), paste0(r1, "D3") )
  ##      C1D1 C2D1 C3D1 C4D1 C5D1 C1D2 C2D2 C3D2 C4D2 C5D2 C1D3 C2D3 C3D3 C4D3 C5D3
  ##   C1    1    0    0    0    0    1    0    0    0    0    1    0    0    0    0
  ##   C2    0    1    0    0    0    0    1    0    0    0    0    1    0    0    0
  ##   C3    0    0    1    0    0    0    0    1    0    0    0    0    1    0    0
  ##   C4    0    0    0    1    0    0    0    0    1    0    0    0    0    1    0
  ##   C5    0    0    0    0    1    0    0    0    0    1    0    0    0    0    1
#-- define mirt model
I <- ncol(dat)  # I=27
mirtmodel <- mirt::mirt.model("
        C1D1=1-9 \n C2D1=1-9 \n  C3D1=1-9 \n  C4D1=1-9  \n  C5D1=1-9
        C1D2=10-18 \n C2D2=10-18 \n  C3D2=10-18 \n  C4D2=10-18  \n  C5D2=10-18
        C1D3=19-27 \n C2D3=19-27 \n  C3D3=19-27 \n  C4D3=19-27  \n  C5D3=19-27
        CONSTRAIN=(1-9,a1),(1-9,a2),(1-9,a3),(1-9,a4),(1-9,a5),
                    (10-18,a6),(10-18,a7),(10-18,a8),(10-18,a9),(10-18,a10),
                    (19-27,a11),(19-27,a12),(19-27,a13),(19-27,a14),(19-27,a15)
                ")
#-- get initial parameter values
mod.pars <- mirt::mirt(dat, model=mirtmodel,  pars="values")
#-- redefine initial parameter values
# set all d parameters initially to zero
ind <- which( ( mod.pars$name=="d" ) )
mod.pars[ ind,"value" ]  <- 0
# fix item difficulties of reference items to zero
mod.pars[ ind[ c(5,14,23) ], "est"] <- FALSE
mod.pars[ind,]
# initial item parameters of cluster locations (a1,...,a15)
ind <- which( ( mod.pars$name %in% paste0("a", c(1,6,11) ) ) & ( mod.pars$est ) )
mod.pars[ind,"value"] <- -2
ind <- which( ( mod.pars$name %in% paste0("a", c(1,6,11)+1 ) ) & ( mod.pars$est ) )
mod.pars[ind,"value"] <- -1
ind <- which( ( mod.pars$name %in% paste0("a", c(1,6,11)+2 ) ) & ( mod.pars$est ) )
mod.pars[ind,"value"] <- 0
ind <- which( ( mod.pars$name %in% paste0("a", c(1,6,11)+3 ) ) & ( mod.pars$est ) )
mod.pars[ind,"value"] <- 1
ind <- which( ( mod.pars$name %in% paste0("a", c(1,6,11)+4 ) ) & ( mod.pars$est ) )
mod.pars[ind,"value"] <- 0
#-- define prior for latent class analysis
lca_prior <- function(Theta,Etable){
  TP <- nrow(Theta)
  if ( is.null(Etable) ){ prior <- rep( 1/TP, TP ) }
  if ( ! is.null(Etable) ){
    prior <- ( rowSums(Etable[, seq(1,2*I,2)]) + rowSums(Etable[,seq(2,2*I,2)]) )/I
  }
  prior <- prior / sum(prior)
  return(prior)
}

#-- estimate model in mirt
mod4 <- mirt::mirt(dat, mirtmodel, pars=mod.pars, verbose=TRUE,
              technical=list( customTheta=Theta, customPriorFun=lca_prior,
                    MAXQUAD=1E20) )
# correct number of estimated parameters
mod4@nest <- as.integer(sum(mod.pars$est) + nrow(Theta)-1 )
# extract coefficients
# source.all(pfsirt)
cmod4 <- sirt::mirt.wrapper.coef(mod4)

# estimated item difficulties
dfr <- data.frame( "sim"=b, "mirt"=-cmod4$coef$d, "sirt"=mod1$item$thresh )
round( dfr, 4 )
  ##         sim    mirt    sirt
  ##   1  -1.500 -1.3782 -1.3382
  ##   2  -1.125 -1.0059 -0.9774
  ##   3  -0.750 -0.6157 -0.6016
  ##   4  -0.375 -0.2099 -0.2060
  ##   5   0.000  0.0000  0.0000
  ##   6   0.375  0.5085  0.4984
  ##   7   0.750  0.8661  0.8504
  ##   8   1.125  1.3079  1.2847
  ##   9   1.500  1.5891  1.5620
  ##   [...]

#-- reordering estimated latent clusters to make solutions comparable
#* extract estimated cluster locations from sirt
order.sirt <- c(1,5,3,4,2)  # sort(order.sirt)
round(mod1$trait[,1:3],3)
dfr <- data.frame( "sim"=theta.k, mod1$trait[order.sirt,1:3] )
colnames(dfr)[4:6] <- paste0("sirt",1:3)
#* extract estimated cluster locations from mirt
c4 <- cmod4$coef[, paste0("a",1:15) ]
c4 <- apply( c4,2, FUN=function(ll){ ll[ ll!=0 ][1] } )
trait.loc <- matrix(c4,5,3)
order.mirt <- c(1,4,3,5,2)  # sort(order.mirt)
dfr <- cbind( dfr, trait.loc[ order.mirt, ] )
colnames(dfr)[7:9] <- paste0("mirt",1:3)
# compare estimated cluster locations
round(dfr,3)
  ##     sim.1 sim.2 sim.3  sirt1  sirt2  sirt3  mirt1  mirt2  mirt3
  ##   1  -3.0  -4.1  -2.8 -2.776 -3.791 -2.667 -2.856 -4.023 -2.741
  ##   5   1.7   2.3   1.8  1.791  2.330  1.844  1.817  2.373  1.869
  ##   3   0.2   0.4  -0.1  0.332  0.418 -0.046  0.349  0.421 -0.051
  ##   4   2.6   0.1  -0.9  2.601  0.171 -0.854  2.695  0.166 -0.876
  ##   2  -1.1  -0.7   0.9 -0.989 -0.605  0.957 -1.009 -0.618  0.962
#* compare estimated cluster sizes
dfr <- data.frame( "sim"=pi.k, "sirt"=mod1$pi.k[order.sirt,1],
            "mirt"=mod4@Prior[[1]][ order.mirt] )
round(dfr,4)
  ##      sim   sirt   mirt
  ##   1 0.20 0.2502 0.2500
  ##   2 0.25 0.2522 0.2511
  ##   3 0.25 0.2458 0.2494
  ##   4 0.10 0.1011 0.0986
  ##   5 0.15 0.1507 0.1509

#############################################################################
# EXAMPLE 5: Dataset data.si04 from Bartolucci et al. (2012)
#############################################################################

data(data.si04)

# define reference items
ref.item <- c(7,17,25,44,64)
dimensions <- data.si04$itempars$dim

# estimate a Rasch latent class with 9 classes
mod1 <- sirt::rasch.mirtlc( data.si04$data, Nclasses=9, dimensions=dimensions,
             modeltype="MLC1", ref.item=ref.item, glob.conv=.005, conv1=.005,
             nstarts=1, mmliter=200 )

# compare estimated distribution with simulated distribution
round( cbind( mod1$theta.k, mod1$pi.k ), 4 ) # estimated
  ##            [,1]    [,2]    [,3]    [,4]    [,5]   [,6]
  ##    [1,] -3.6043 -5.1323 -5.3022 -6.8255 -4.3611 0.1341
  ##    [2,]  0.2083 -2.7422 -2.8754 -5.3416 -2.5085 0.1573
  ##    [3,] -2.8641 -4.0272 -5.0580 -0.0340 -0.9113 0.1163
  ##    [4,] -0.3575 -2.0081 -1.7431  1.2992 -0.1616 0.0751
  ##    [5,]  2.9329  0.3662 -1.6516 -3.0284  0.1844 0.1285
  ##    [6,]  1.5092 -2.0461 -4.3093  1.0481  1.0806 0.1094
  ##    [7,]  3.9899  3.1955 -4.0010  1.8879  2.2988 0.1460
  ##    [8,]  4.3062  0.7080 -1.2324  1.4351  2.0893 0.1332
  ##    [9,]  5.0855  4.1214 -0.9141  2.2744  1.5314 0.0000

round(d2,4) # simulated
  ##         class      A      B      C      D      E     pi
  ##    [1,]     1 -3.832 -5.399 -5.793 -7.042 -4.511 0.1323
  ##    [2,]     2 -2.899 -4.217 -5.310 -0.055 -0.915 0.1162
  ##    [3,]     3 -0.376 -2.137 -1.847  1.273 -0.078 0.0752
  ##    [4,]     4  0.208 -2.934 -3.011 -5.526 -2.511 0.1583
  ##    [5,]     5  1.536 -2.137 -4.606  1.045  1.143 0.1092
  ##    [6,]     6  2.042 -0.573 -0.404 -4.331 -1.044 0.0471
  ##    [7,]     7  3.853  0.841 -2.993 -2.746  0.803 0.0822
  ##    [8,]     8  4.204  3.296 -4.328  1.892  2.419 0.1453
  ##    [9,]     9  4.466  0.700 -1.334  1.439  2.161 0.1343
# }

Run the code above in your browser using DataCamp Workspace