sitar(x, y, id, data, df, knots, fixed = random, random = "a+b+c", a.formula = ~1,
b.formula = ~1, c.formula = ~1, bounds = 0.04, start, bstart = "mean", xoffset = "mean",
returndata = FALSE, verbose = FALSE, correlation = NULL,
weights = NULL, subset = NULL, method = "ML", na.action = na.fail,
control = nlmeControl(returnObject = TRUE), newform = TRUE)
## S3 method for class 'sitar':
update(object, ..., evaluate = TRUE)
x
, y
and id
.df
quantiles of x
distribution).random
)."a+b+c"
).~ 1
).~ 1
).~ 1
).x
for regression spline, or fractional extension of range (default 0.04).nlme
).x
(either "mean" (default), "apv" or value).subset
and
subsample
for simulnlme
).corStruct
object describing the within-group correlation structure (see nlme
).varFunc
object or one-sided formula describing the within-group heteroscedasticity structure (see nlme
).nlme
).nlme
).nlme
).nlme
).sitar
object - default TRUE indicates new form.sitar
.update
consisting of any of the above sitar
parameters.update
call is passed to sitar
for evaluation, while if FALSE the expanded call itself is returned.sitar
representing the nonlinear mixed-effects model fit. Generic functions such
as print
, plot
and summary
have methods to show the results of the fit. The
functions resid
, coef
, fitted
, fixed.effects
, and random.effects
can
be used to extract some of its components.xoffset
is ignored unless newform
is FALSE. bstart
(or
xoffset
if !newform
) allow the origin of b to be varied, which affects its
random effect variance. update
updates the model by taking the object
call,
adding any new parameters and replacing changed ones. Where possible the fixed and random
effects of the model being updated are passed via the start
argument.data(heights)
## fit simple model
m1 <- sitar(x=age, y=height, id=id, data=heights, df=5)
## alternatively try sqrt transform for height and increase df
m2 <- update(m1, x=age, y=sqrt(height), df=6)
Run the code above in your browser using DataLab