sitar(x, y, id, data, df, knots, fixed = random, random = "a+b+c", a.formula = ~1,
b.formula = ~1, c.formula = ~1, bounds = 0.04, start, bstart = "mean", xoffset = "mean",
returndata = FALSE, verbose = FALSE, correlation = NULL,
weights = NULL, subset = NULL, method = "ML", na.action = na.fail,
control = nlmeControl(returnObject = TRUE), newform = TRUE)
## S3 method for class 'sitar':
update(object, ..., evaluate = TRUE)x, y and id.df quantiles of x distribution).random)."a+b+c").~ 1).~ 1).~ 1).x for regression spline, or fractional extension of range (default 0.04).nlme).x (either "mean" (default), "apv" or value).subset and
subsample for simulnlme).corStruct object describing the within-group correlation structure (see nlme).varFunc object or one-sided formula describing the within-group heteroscedasticity structure (see nlme).nlme).nlme).nlme).nlme).sitar object - default TRUE indicates new form.sitar.update consisting of any of the above sitar parameters.update call is passed to sitar for evaluation, while if FALSE the expanded call itself is returned.sitar representing the nonlinear mixed-effects model fit. Generic functions such
as print, plot and summary have methods to show the results of the fit. The
functions resid, coef, fitted, fixed.effects, and random.effects can
be used to extract some of its components.xoffset is ignored unless newform is FALSE. bstart (or
xoffset if !newform) allow the origin of b to be varied, which affects its
random effect variance. update updates the model by taking the object call,
adding any new parameters and replacing changed ones. Where possible the fixed and random
effects of the model being updated are passed via the start argument.data(heights)
## fit simple model
m1 <- sitar(x=age, y=height, id=id, data=heights, df=5)
## alternatively try sqrt transform for height and increase df
m2 <- update(m1, x=age, y=sqrt(height), df=6)Run the code above in your browser using DataLab