## convert 10% IOTF overweight prevalence (cutoff IOTF 25, including obesity)
## in 8-year-old boys to overweight prevalence for cutoff WHO +1
ob_convertr(age = 8, sex = 'boys', from = 'IOTF 25', to = 'WHO +1', pfrom = 10)
## compare the BMI density functions and cutoffs for IOTF and WHO
## in 8-year-old boys
ob_convertr2(age = 8, sex = 'boys', from = 'IOTF', to = 'WHO', plot = 'density')
## convert IOTF overweight prevalence to WHO overweight prevalence
## and compare with true value - boys and girls aged 7-17 (22 groups)
## note the need to first add obesity prevalence to overweight prevalence
data(deren)
deren <- within(deren, {
CDC85 = CDC85 + CDC95
IOTF25 = IOTF25 + IOTF30
`WHO+1` = `WHO+1` + `WHO+2`})
ob_convertr(age = Age, sex = Sex, from = 'IOTF 25', to = 'WHO +1',
pfrom = IOTF25, pto = `WHO+1`, data = deren, plot = 'compare')
## convert IOTF overweight and obesity prevalence to WHO using
## ob_convertr2 - which is more accurate than ob_convertr
ob_convertr2(age = Age, sex = Sex, from = 'IOTF', to = 'WHO',
pfrom = c('IOTF25', 'IOTF30'), pto = c('WHO+1', 'WHO+2'),
data = deren, plot = 'compare')
## extrapolate WHO overweight and obesity prevalence (cutoffs +1 and +2)
## to severe obesity prevalence based on cutoffs +2.5 or +3
ob_convertr2(Age, Sex, from = 1:2, to = c(2.5, 3),
pfrom = c('WHO+1', 'WHO+2'), data = deren, report = 'wider')
Run the code above in your browser using DataLab