# NOT RUN {
# Retrieve the samples for Mato Grosso
# select band "ndvi"
samples_ndvi <- sits_select(samples_mt_4bands, bands = "NDVI")
# select a random forest model
rfor_model <- sits_train(samples_ndvi, sits_rfor(num_trees = 500))
# Classify a raster file with 23 instances for one year
files <- c(system.file("extdata/raster/mod13q1/sinop-crop-ndvi.tif",
package = "sits"
))
# create a data cube based on the information about the files
sinop <- sits_cube(
type = "BRICK", satellite = "TERRA",
sensor = "MODIS", name = "Sinop-crop",
timeline = timeline_modis_392,
output_dir = tempdir(),
bands = c("NDVI"), files = files
)
# classify the raster image
sinop_probs <- sits_classify(sinop,
ml_model = rfor_model,
output_dir = tempdir(),
memsize = 4, multicores = 2
)
# label the classification and smooth the result with a bayesian filter
sinop_bayes <- sits_smooth(sinop_probs, output_dir = tempdir()
)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab