Takes a set of classified raster layers with probabilities, and label them based on the maximum probability for each pixel.
sits_label_classification(
cube,
multicores = 1,
memsize = 1,
output_dir = tempdir(),
version = "v1"
)
Classified image data cube.
Number of process to label the classification in snow subprocess.
Maximum overall memory (in GB) to label the classification.
Output directory where to out the file
Version of resulting image (in the case of multiple tests)
A data cube
# NOT RUN {
# Retrieve the samples for Mato Grosso
# select band "ndvi"
samples_ndvi <- sits_select(samples_modis_4bands, bands = "NDVI")
# select a random forest model
rfor_model <- sits_train(samples_ndvi, sits_rfor(num_trees = 500))
# create a data cube based on the information about the files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(
source = "LOCAL",
name = "sinop_2014",
satellite = "TERRA",
sensor = "MODIS",
data_dir = data_dir,
delim = "_",
parse_info = c("X1", "X2", "tile", "band", "date")
)
# classify the raster image
probs_cube <- sits_classify(cube,
ml_model = rfor_model,
output_dir = tempdir(),
memsize = 4, multicores = 2
)
# label the classification
label_cube <- sits_label_classification(probs_cube, output_dir = tempdir())
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab