if (sits_run_examples()) {
    # select a set of samples
    samples_ndvi <- sits_select(samples_modis_4bands, bands = c("NDVI"))
    # create a random forest model
    rfor_model <- sits_train(samples_ndvi, sits_rfor())
    # create a data cube from local files
    data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
    cube <- sits_cube(
        source = "BDC",
        collection = "MOD13Q1-6",
        data_dir = data_dir,
        delim = "_",
        parse_info = c("X1", "X2", "tile", "band", "date")
    )
    # classify a data cube
    probs_cube <- sits_classify(data = cube, ml_model = rfor_model)
    # label cube with the most likely class
    label_cube <- sits_label_classification(probs_cube)
    # plot the resulting classified image
    plot(label_cube)
}
Run the code above in your browser using DataLab