if (sits_run_examples()) {
# select a set of samples
samples_ndvi <- sits_select(samples_modis_4bands, bands = c("NDVI"))
# create a random forest model
rfor_model <- sits_train(samples_ndvi, sits_rfor())
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(
source = "BDC",
collection = "MOD13Q1-6",
data_dir = data_dir,
delim = "_",
parse_info = c("X1", "X2", "tile", "band", "date")
)
# classify a data cube
probs_cube <- sits_classify(data = cube, ml_model = rfor_model)
# label cube with the most likely class
label_cube <- sits_label_classification(probs_cube)
# plot the resulting classified image
plot(label_cube)
}
Run the code above in your browser using DataLab