if (sits_run_examples()) {
# show accuracy for a set of samples
train_data <- sits_sample(samples_modis_4bands, n = 200)
test_data <- sits_sample(samples_modis_4bands, n = 200)
rfor_model <- sits_train(train_data, sits_rfor())
points_class <- sits_classify(test_data, rfor_model)
acc <- sits_accuracy(points_class)
# show accuracy for a data cube classification
# select a set of samples
samples_ndvi <- sits_select(samples_modis_4bands, bands = c("NDVI"))
# create a random forest model
rfor_model <- sits_train(samples_ndvi, sits_rfor())
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(
source = "BDC",
collection = "MOD13Q1-6",
data_dir = data_dir,
delim = "_",
parse_info = c("X1", "X2", "tile", "band", "date")
)
# classify a data cube
probs_cube <- sits_classify(data = cube, ml_model = rfor_model)
# label the probability cube
label_cube <- sits_label_classification(probs_cube)
# obtain the ground truth for accuracy assessment
ground_truth <- system.file("extdata/samples/samples_sinop_crop.csv",
package = "sits"
)
# make accuracy assessment
as <- sits_accuracy(label_cube, validation_csv = ground_truth)
}
Run the code above in your browser using DataLab