Learn R Programming

sits (version 1.4.0)

plot.class_cube: Plot classified images

Description

plots a classified raster using ggplot.

Usage

# S3 method for class_cube
plot(
  x,
  y,
  ...,
  tile = x$tile[[1]],
  title = "Classified Image",
  legend = NULL,
  palette = "Spectral",
  tmap_options = NULL
)

Value

A color map, where each pixel has the color associated to a label, as defined by the legend parameter.

Arguments

x

Object of class "class_cube".

y

Ignored.

...

Further specifications for plot.

tile

Tile to be plotted.

title

Title of the plot.

legend

Named vector that associates labels to colors.

palette

Alternative RColorBrewer palette

tmap_options

List with optional tmap parameters tmap_max_cells (default: 1e+06) tmap_graticules_labels_size (default: 0.7) tmap_legend_title_size (default: 1.5) tmap_legend_text_size (default: 1.2) tmap_legend_bg_color (default: "white") tmap_legend_bg_alpha (default: 0.5)

Author

Gilberto Camara, gilberto.camara@inpe.br

Examples

Run this code
if (sits_run_examples()) {
    # create a random forest model
    rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
    # create a data cube from local files
    data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
    cube <- sits_cube(
        source = "BDC",
        collection = "MOD13Q1-6",
        data_dir = data_dir
    )
    # classify a data cube
    probs_cube <- sits_classify(
        data = cube, ml_model = rfor_model, output_dir = tempdir()
    )
    # label cube with the most likely class
    label_cube <- sits_label_classification(
        probs_cube, output_dir = tempdir()
    )
    # plot the resulting classified image
    plot(label_cube)
}

Run the code above in your browser using DataLab