if (sits_run_examples()) {
# Open mask map
data_dir <- system.file("extdata/raster/prodes", package = "sits")
prodes2021 <- sits_cube(
source = "USGS",
collection = "LANDSAT-C2L2-SR",
data_dir = data_dir,
parse_info = c("X1", "X2", "tile", "start_date", "end_date",
"band", "version"),
bands = "class",
labels = c("Forest", "Water", "NonForest",
"NonForest2", "NoClass", "d2007", "d2008",
"d2009", "d2010", "d2011", "d2012",
"d2013", "d2014", "d2015", "d2016",
"d2017", "d2018", "r2010", "r2011",
"r2012", "r2013", "r2014", "r2015",
"r2016", "r2017", "r2018", "d2019",
"r2019", "d2020", "NoClass", "r2020",
"Clouds2021", "d2021", "r2021"),
version = "v20220606"
)
# Open classification map
data_dir <- system.file("extdata/raster/classif", package = "sits")
ro_class <- sits_cube(
source = "MPC",
collection = "SENTINEL-2-L2A",
data_dir = data_dir,
parse_info = c("X1", "X2", "tile", "start_date", "end_date",
"band", "version"),
bands = "class",
labels = c("ClearCut_Burn", "ClearCut_Soil",
"ClearCut_Veg", "Forest")
)
# Reclassify cube
ro_mask <- sits_reclassify(
cube = ro_class,
mask = prodes2021,
rules = list(
"Deforestation_Mask" = mask %in% c(
"d2007", "d2008", "d2009",
"d2010", "d2011", "d2012",
"d2013", "d2014", "d2015",
"d2016", "d2017", "d2018",
"r2010", "r2011", "r2012",
"r2013", "r2014", "r2015",
"r2016", "r2017", "r2018",
"d2019", "r2019", "d2020",
"r2020", "r2021"
),
"Water" = mask == "Water",
"NonForest" = mask %in% c("NonForest", "NonForest2")
),
memsize = 4,
multicores = 2,
output_dir = tempdir(),
version = "v2"
)
plot(ro_mask)
}
Run the code above in your browser using DataLab