Takes a set of classified raster layers with probabilities, and label them based on the maximum probability for each pixel.
sits_label_classification(
cube,
memsize = 4,
multicores = 2,
output_dir,
version = "v1",
progress = TRUE
)# S3 method for probs_cube
sits_label_classification(
cube,
memsize = 4,
multicores = 2,
output_dir,
version = "v1",
progress = TRUE
)
A data cube with an image with the classified map.
Classified image data cube.
maximum overall memory (in GB) to label the classification.
Number of workers to label the classification in parallel.
Output directory for classified files.
Version of resulting image (in the case of multiple runs).
Show progress bar?
Rolf Simoes, rolf.simoes@inpe.br
if (sits_run_examples()) {
# create a random forest model
rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(
source = "BDC",
collection = "MOD13Q1-6",
data_dir = data_dir
)
# classify a data cube
probs_cube <- sits_classify(
data = cube, ml_model = rfor_model, output_dir = tempdir()
)
# plot the probability cube
plot(probs_cube)
# smooth the probability cube using Bayesian statistics
bayes_cube <- sits_smooth(probs_cube, output_dir = tempdir())
# plot the smoothed cube
plot(bayes_cube)
# label the probability cube
label_cube <- sits_label_classification(
bayes_cube, output_dir = tempdir()
)
# plot the labelled cube
plot(label_cube)
}
Run the code above in your browser using DataLab